Skip to main content
eScholarship
Open Access Publications from the University of California

Distributed receding horizon control for multi-vehicle formation stabilization

  • Author(s): Dunbar, William B
  • Murray, R M
  • et al.
Abstract

We consider the control of interacting subsystems whose dynamics and constraints are decoupled, but whose state vectors are coupled nonseparably in a single cost function of a finite horizon optimal control problem. For a given cost structure, we generate distributed optimal control problems for each subsystem and establish that a distributed receding horizon control implementation is stabilizing to a neighborhood of the objective state. The implementation requires synchronous updates and the exchange of the most recent optimal control trajectory between coupled subsystems prior to each update. The key requirements for stability are that each subsystem not deviate too far from the previous open-loop state trajectory, and that the receding horizon updates happen sufficiently fast. The venue of multi-vehicle formation stabilization is used to demonstrate the distributed implementation. (c) 2006 Elsevier Ltd. All rights reserved.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View