Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Ectopic overexpression of ShCBF1 and SlCBF1 in tomato suggests an alternative view of fruit responses to chilling stress postharvest.

Abstract

Postharvest chilling injury (PCI) is a physiological disorder that often impairs tomato fruit ripening; this reduces fruit quality and shelf-life, and even accelerates spoilage at low temperatures. The CBF gene family confers cold tolerance in Arabidopsis thaliana, and constitutive overexpression of CBF in tomato increases vegetative chilling tolerance, in part by retarding growth, but, whether CBF increases PCI tolerance in fruit is unknown. We hypothesized that CBF1 overexpression (OE) would be induced in the cold and increase resistance to PCI. We induced high levels of CBF1 in fruit undergoing postharvest chilling by cloning it from S. lycopersicum and S. habrochaites, using the stress-inducible RD29A promoter. Harvested fruit were cold-stored (2.5°C) for up to three weeks, then rewarmed at 20°C for three days. Transgene upregulation was triggered during cold storage from 8.6- to 28.6-fold in SlCBF1-OE, and between 3.1- to 8.3-fold in ShCBF1-OE fruit, but developmental abnormalities in the absence of cold induction were visible. Remarkably, transgenic fruit displayed worsening of PCI symptoms, i.e., failure to ripen after rewarming, comparatively higher susceptibility to decay relative to wild-type (WT) fruit, lower total soluble solids, and the accumulation of volatile compounds responsible for off-odors. These symptoms correlated with CBF1 overexpression levels. Transcriptomic analysis revealed that the ripening and biotic and abiotic stress responses were altered in the cold-stored transgenic fruit. Seedlings grown from chilled and non-chilled WT fruit, in addition to non-chilled transgenic fruit were also exposed to 0°C to test their photosynthetic response to chilling injury. Chilled WT seedlings adjusted their photosynthetic rates to reduce oxidative damage; non-chilled WT seedlings did not. Photosynthetic parameters between transgenic seedlings were similar at 0°C, but SlCBF1-OE showed more severe photoinhibition than ShCBF1-OE, mirroring phenotypic observations. These results suggest that 1) CBF1 overexpression accelerated fruit deterioration in response to cold storage, and 2) Chilling acclimation in fructus can increase chilling tolerance in seedling progeny of WT tomato.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View