Skip to main content
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Evapotranspiration response to multiyear dry periods in the semiarid western United States

Published Web Location Commons 'BY' version 4.0 license

Analysis of measured evapotranspiration shows that subsurface plant-accessible water storage (PAWS) can sustain evapotranspiration through multiyear dry periods. Measurements at 25 flux tower sites in the semiarid western United States, distributed across five land cover types, show both resistance and vulnerability to multiyear dry periods. Average (±standard deviation) evapotranspiration ranged from 660 ± 230 mm yr −1 (October–September) in evergreen needleleaf forests to 310 ± 200 mm yr −1 in grasslands and shrublands. More than 52% of the annual evapotranspiration in Mediterranean climates is supported on average by seasonal drawdown of subsurface PAWS, versus 29% in monsoon-influenced climates. Snowmelt replenishes dry-season PAWS by as much as 20% at sites with significant seasonal snow accumulation but was insignificant at most sites. Evapotranspiration exceeded precipitation in more than half of the observation years at sites below 35°N. Annual evapotranspiration at non-energy-limited sites increased with precipitation, reaching a mean wet-year evapotranspiration of 833 mm for evergreen needleleaf forests, 861 mm for mixed forests, 558 mm for woody savannas, 367 mm for grasslands, and 254 mm for shrublands. Thirteen sites experienced at least one multiyear dry period, when mean precipitation was more than one standard deviation below the historical mean. All vegetation types except evergreen needleleaf forests responded to multiyear dry periods by lowering evapotranspiration and/or significant year-over-year depletion of subsurface PAWS. Sites maintained wet-year evapotranspiration rates for 8–33 months before attenuation, with a corresponding net PAWS drawdown of as much as 334 mm. Net drawdown at many sites continued until the dry period ended, resulting in an overall cumulative withdrawal of as much as 558 mm. Evergreen needleleaf forests maintained high evapotranspiration during multiyear dry periods with no apparent PAWS drawdown; these forests currently avoid drought but may prove vulnerable to longer and warmer dry periods that reduce snowpack storage and accelerate evapotranspiration.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View