Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Reduction of epithelial secretion in male rat distal colonic mucosa by bile acid receptor TGR5 agonist, INT‐777: role of submucosal neurons

Published Web Location

https://doi.org/10.1111/nmo.12866
Abstract

Background

Recent evidence from rat neuron-free mucosa study suggests that the membrane bile acid receptor TGR5 decreases colonic secretion under basal and stimulated conditions. As submucosal neurons are key players in secretory processes and highly express TGR5, we investigated their role in TGR5 agonist-induced inhibition of secretion and the pathways recruited.

Methods

TGR5 expression and localization were assessed in rat proximal (pC) and distal (dC) colon by qPCR and immunohistochemistry with double labeling for cholinergic neurons in whole-mount preparations. The influence of a selective (INT-777) or weak (ursodeoxycholic acid, UDCA) TGR5 agonist on colonic secretion was assessed in Ussing chambers, in dC preparation removing seromuscular ± submucosal tissues, in the presence of different inhibitors of secretion pathways.

Key results

TGR5 mRNA is expressed in full thickness dC and pC and immunoreactivity is located in colonocytes and pChAT-positive neurons. Addition of INT-777, and less potently UDCA, decreased colonic secretion in seromuscular stripped dC by -58.17± 2.6%. INT-777 effect on basal secretion was reduced in neuron-free and TTX-treated mucosal-submucosal preparations. Atropine, hexamethonium, indomethacin, and L-NAME all reduced significantly INT-777's inhibitory effect while the 5-HT4 antagonist, RS-39604, and lidocaine abolished it. INT-777 inhibited stimulated colonic secretion induced by nicotine, but not cisapride, carbachol or PGE2.

Conclusions & inferences

TGR5 activation inhibits basal and stimulated distal colonic secretion in rats by acting directly on epithelial cells and also inhibiting submucosal neurons. This could represent a counter-regulatory mechanism, at the submucosal level, of the known prosecretory effect of bile acids in the colon.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View