Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Role of α5* nicotinic acetylcholine receptors in the effects of acute and chronic nicotine treatment on brain reward function in mice

Abstract

Allelic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit gene, CHRNA5, increases vulnerability to tobacco addiction. Here, we investigated the role of α5* nAChRs in the effects of nicotine on brain reward systems. Effects of acute (0.03125-0.5 mg/kg SC) or chronic (24 mg/kg per day; osmotic minipump) nicotine and mecamylamine-precipitated withdrawal on intracranial self-stimulation (ICSS) thresholds were assessed in wild-type and α5 nAChR subunit knockout mice. Noxious effects of nicotine were further investigated using a conditioned taste aversion procedure. Lower nicotine doses (0.03125-0.125 mg/kg) decreased ICSS thresholds in wild-type and α5 knockout mice. At higher doses (0.25-0.5 mg/kg), threshold-lowering effects of nicotine were diminished in wild-type mice, whereas nicotine lowered thresholds across all doses tested in α5 knockout mice. Nicotine (1.5 mg/kg) conditioned a taste aversion to saccharine equally in both genotypes. Mecamylamine (5 mg/kg) elevated ICSS thresholds by a similar magnitude in wild-type and α5 knockout mice prepared with minipumps delivering nicotine. Unexpectedly, mecamylamine also elevated thresholds in saline-treated α5 knockout mice. α5* nAChRs are not involved in reward-enhancing effects of lower nicotine doses, the reward-inhibiting effects of nicotine withdrawal, or the general noxious effects of higher nicotine doses. Instead, α5* nAChRs regulate the reward-inhibiting effects nicotine doses that oppose the reward-facilitating effects of the drug. These data suggest that disruption of α5* nAChR signaling greatly expands the range of nicotine doses that facilitate brain reward activity, which may help explain the increased tobacco addiction vulnerability associated with CHRNA5 risk alleles.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View