Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Delivery of CdiA Nuclease Toxins into Target Cells during Contact-Dependent Growth Inhibition

Abstract

Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiB/CdiA family of two-partner secretion proteins. CDI systems deploy a variety of distinct toxins, which are contained within the polymorphic C-terminal region (CdiA-CT) of CdiA proteins. Several CdiA-CTs are nucleases, suggesting that the toxins are transported into the target cell cytoplasm to interact with their substrates. To analyze CdiA transfer to target bacteria, we used the CDI system of uropathogenic Escherichia coli 536 (UPEC536) as a model. Antibodies recognizing the amino- and carboxyl-termini of CdiA(UPEC536) were used to visualize transfer of CdiA from CDI(UPEC536+) inhibitor cells to target cells using fluorescence microscopy. The results indicate that the entire CdiA(UPEC536) protein is deposited onto the surface of target bacteria. CdiA(UPEC536) transfer to bamA101 mutants is reduced, consistent with low expression of the CDI receptor BamA on these cells. Notably, our results indicate that the C-terminal CdiA-CT toxin region of CdiA(UPEC536) is translocated into target cells, but the N-terminal region remains at the cell surface based on protease sensitivity. These results suggest that the CdiA-CT toxin domain is cleaved from CdiA(UPEC536) prior to translocation. Delivery of a heterologous Dickeya dadantii CdiA-CT toxin, which has DNase activity, was also visualized. Following incubation with CDI(+) inhibitor cells targets became anucleate, showing that the D.dadantii CdiA-CT was delivered intracellularly. Together, these results demonstrate that diverse CDI toxins are efficiently translocated across target cell envelopes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View