Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Fluorescamine Labeling for Assessment of Protein Conformational Change and Binding Affinity in Protein–Nanoparticle Interaction

Abstract

Protein adsorption alters the "biological identity" of nanoparticles (NPs) and could affect how biosystems respond to invading NPs. Study of protein-NP interaction can help understand how the physicochemical properties of NPs impact the interaction and thus potentially guide the design of safer and more effective NPs for biomedical or other applications. Binding affinity between proteins and NPs and the occurrence of protein conformational change upon binding to NPs are two important aspects to be learned, but few methods are currently available to assess both simultaneously in a simple way. Herein, we demonstrated that the fluorescamine labeling method developed by our group not only could reveal protein conformational change upon adsorption to NPs, owing to its capability to label the primary amines exposed on protein surface, but also could be applied to measure the binding affinity. By screening the interaction between a large number of proteins and four types of NPs, the present study also revealed that protein adsorption onto NPs could be strongly affected by structure flexibility. The proteins with high structure flexibility experienced high degrees of conformation change when binding to the polystyrene NPs, which could potentially influence protein function. Overall, we demonstrate that our assay is a quick, simple, and high-throughput tool to reveal potential impacts on protein activity and evaluate the strength of protein-NP binding.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View