Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Conditional Generative Models for Dynamic Trajectory Generation and Urban Driving

Published Web Location

https://doi.org/10.3390/s23156764Creative Commons 'BY' version 4.0 license
Abstract

This work explores methodologies for dynamic trajectory generation for urban driving environments by utilizing coarse global plan representations. In contrast to state-of-the-art architectures for autonomous driving that often leverage lane-level high-definition (HD) maps, we focus on minimizing required map priors that are needed to navigate in dynamic environments that may change over time. To incorporate high-level instructions (i.e., turn right vs. turn left at intersections), we compare various representations provided by lightweight and open-source OpenStreetMaps (OSM) and formulate a conditional generative model strategy to explicitly capture the multimodal characteristics of urban driving. To evaluate the performance of the models introduced, a data collection phase is performed using multiple full-scale vehicles with ground truth labels. Our results show potential use cases in dynamic urban driving scenarios with real-time constraints. The dataset is released publicly as part of this work in combination with code and benchmarks.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View