Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic properties of the shrimp Lysmata californica.

  • Author(s): Taylor, Jennifer RA
  • Gilleard, Jasmine M
  • Allen, Michael C
  • Deheyn, Dimitri D
  • et al.

Published Web Location

https://doi.org/10.1038/srep10608
Abstract

The anticipated effects of CO2-induced ocean acidification on marine calcifiers are generally negative, and include dissolution of calcified elements and reduced calcification rates. Such negative effects are not typical of crustaceans for which comparatively little ocean acidification research has been conducted. Crustaceans, however, depend on their calcified exoskeleton for many critical functions. Here, we conducted a short-term study on a common caridean shrimp, Lysmata californica, to determine the effect of CO2-driven reduction in seawater pH on exoskeleton growth, structure, and mineralization and animal cryptic coloration. Shrimp exposed to ambient (7.99 ± 0.04) and reduced pH (7.53 ± 0.06) for 21 days showed no differences in exoskeleton growth (percent increase in carapace length), but the calcium weight percent of their cuticle increased significantly in reduced pH conditions, resulting in a greater Ca:Mg ratio. Cuticle thickness did not change, indicating an increase in the mineral to matrix ratio, which may have mechanical consequences for exoskeleton function. Furthermore, there was a 5-fold decrease in animal transparency, but no change in overall shrimp coloration (red). These results suggest that even short-term exposure to CO2-induced pH reduction can significantly affect exoskeleton mineralization and shrimp biophotonics, with potential impacts on crypsis, physical defense, and predator avoidance.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View