Skip to main content
Open Access Publications from the University of California

James-Stein Type Estimator in Large Samples with Application to the Least Absolute Deviations Estimator


We explore the extension of James-Stein type estimators in a direction that enables them to preserve their superiority when the sample size goes to infinity. Instead of shrinking a base estimator towards a fixed point, we shrink it towards a data-dependent point. We provide an analytic expression for the asymptotic risk and bias of James-Stein type estimators shrunk towards a data-dependent point and prove that they have smaller asymptotic risk than the base estimator. Shrinking an estimator toward a datadependent point turns out to be equivalent to combining two random variables using the James-Stein rule. We propose a general combination scheme which includes random combination (the James-Stein combination) and the usual nonrandom combination as special cases. As an example, we apply our method to combine the Least Absolute Deviations estimator and the Least Squares estimator. Our simulation study indicates that the resulting combination estimators have desirable finite sample properties when errors are drawn from symmetric distributions. Finally, using stock return data we present some empirical evidence that the combination estimators have the potential to improve out-of-sample prediction in terms of both mean square error and mean absolute error.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View