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Abstract of the Dissertation

Information-Centric Vehicular Ad-Hoc

Networks: Challenges and Solutions

by

Yu-Ting Yu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Mario Gerla, Co-chair

Professor Mohammad Yahya Sanadidi, Co-chair

Recently, Information-Centric Networking (ICN) has attracted much attention

in part because of its promising future as next-generation Internet architecture.

While ICN is scalable and efficient in the Internet, it raises concerns when deployed

in a mobile large scale network like the Vehicular Ad-hoc Network (VANET).

For example, conventional ICN techniques do not work well in the intermittent

VANET connectivity. Moreover, current ICN proposal strictly follows a receiver-

driven transport design. However, many applications in multi-hop adhoc networks

are push-based and require fast communications. ICN’s pull-based transport in

such cases is underperforming and costly. Finally, the inefficiency introduced by

ICN default anycast may backfire without careful design.

In this study, we introduce Information-Centric Ad-hoc Network (ICAN), an

efficient, flexible, and adaptive ICN architecture supporting both pull and push

transport and contextaware, multi-hop and disruption-tolerant communications

all in one system.
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CHAPTER 1

Introduction

Today’s mobile networking very much relies on the infrastructure technology.

However, the advance of infrastructure deployment cannot always meet the burst-

ing demands of diverse scenarios and applications on the user end. To meet the

growing demands of vehicular networking, mobile ad-hoc networking with the ad-

vantages of fast deployment and easy device replacement is attracting more and

more attentions. Ad-hoc communication enables the possibility of communication

in rural or emergency scenarios that lack of infrastructure coverage, and also en-

ables various possibilities for applications that were not usable or reliable in the

infrastructure mobile network. For example, a number of applications utilizing

direct machine to machine connectivity such as autonomous driving vehicles [2][3],

urban surveillance [4][5], and content sharing [6] have been broadly discussed.

As the demands of highly mobile ad-hoc networking increase in the future,

it is critical to propose an architectural mechanism rather than point solutions

for the ease of rapid on-demand ad-hoc network deployment. To this end, we

introduce Information-Centric Context-aware Ad-hoc Networking (ICAN), a scal-

able machine-to-machine networking architecture that is flexible and adaptive to

diverse application requirements and network conditions. While it is difficult to

define a one-fits-all architecture, in ICAN, the application needs and network con-

ditions are compiled as context in an extendable format so that it is possible to

customize the ad-hoc networking platform in a software controllable manner for

quick deployment and management.
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The ICAN architecture builds on top of three building blocks: network entity

representation, context, and network operation. The network entity representa-

tion defines the identifier of communication units flowing in the network such as

hosts, data objects, and data chunks. Network entities can be associated with each

other. One example is to use the hierarchical namespace broadly used by today’s

ICN community, where a file is identified by its file name with a prefix identify-

ing its host ID, and is segmented as chunks each with a chunk ID [7]. Once the

network entities are identified, their associated contexts are built automatically.

We define the context be either application-related (e.g. content type) or network

condition-related (e.g. connectivity). The context is leveraged by the network

operations to adaptively decide the packet forwarding and caching strategies.

Like most architectural proposals, the components of ICAN are inspired by

prior work, including Information Centric Networking (ICN), Disruption Tolerant

Networking (DTN), and opportunistic routing [8]. Our core contribution is ex-

tending and integrating them in a new architecture. For example, we adopt the

concept of ICN [7], which enforces the receiver-oriented chunk based transport and

in-network caching. While in-network caching is beneficial under mobility, many

ad-hoc network applications are substantially push-based. Although such appli-

cations are also achievable with pull-based transport, the fundamental inefficiency

of pull-only designs will degrade or even destroy the performance in VANET due

to the limited bandwidth and storage. Therefore, we include in ICAN the push-

based transport as a fundamental unit and leverage both push and pull paradigms

by application context.

Although ICAN itself is a common framework suitable for all ad-hoc network

and also applicable to infrastructure network, in this study, we focus particularly

in scenarios such as urban vehicular network and emergency network constituted

by human rescuers and highly mobile vehicles, as we envision that the pervasive

caching and context awareness of ICN have highest potential in highly mobile

2



networks.

The rest of this study is organized as follows. In chapter 2, we briefly discuss

the background and related literature. In chapter 3, we introduce the ICAN

system architecture. In chapter 4, we study the design options on routing and

caching for urban VANET using extensive simulation. With the insights gained

from the simulation, in chapter 5, we propose a context-aware content discovery

for urban vehicular ICN. In chapter 6, we examine the ICAN system in sparse

emergency VANET, and introduce the network coding extension to improve the

efficiency. Finally, we conclude in chapter 7.
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CHAPTER 2

Background

2.1 Information Centric Networks

2.1.1 ICN Background

Our proposed architecture, ICAN, relies heavily on the concept of ICN, also known

as Named Data Networks (NDN) or Content-Centric Networks (CCN) [7], which

is a prominent ICN design aiming for replacing TCP/IP. ICN uses the data names

instead of host addresses to locate data. Every data chunk has a unique name.

To initiate a data transfer, a data consumer must send an Interest to retrieve

the corresponding Data. In other words, ICN strictly assumes a pull-based, one-

interest-one-data transport. The data chunks are cached along the way by all

relays when it traverses the breadcrumb of interest forwarding path from a data

provider back to the data consumer. The ICN packet format is shown in Figure

2.1.

Figure 2.1: ICN packet format

4



Figure 2.2: ICN node model

All ICN nodes are identically built with three data structures: Content Store

(CS), Pending Interest Table (PIT), and Forwarding Information Base (FIB). An

ICN node model is shown in Figure 2.2. CS is a cache used to store received

data. The use of CS is the core design of ICN and the main reason why we choose

to build ICAN as an extended ICN architecture. Caching eases issues caused

by unreliable wireless channel. With distributed caches, a data retrieval failure

arising from intermittent connectivity can be quickly recovered.

PIT “remembers” all pending interests a node received. The two main pur-

poses of PIT are (1) recording the breadcrumb path, and (2) suppressing redun-

dant interest and data transmission for different data consumers. The above usage

of PIT is sufficient to achieve efficient Internet routing since nearly all multi-hop

routing protocols use a breadcrumb path of the exploration packet. However, PIT

alone is not enough for reliable and efficient data delivery in ad-hoc networks. Un-

der intermittent connectivity, the name-based routing must be adjusted so that

5



data can be delivered in a carry-and-forward way. On the other hand, interest

aggregation is valuable as bandwidth utilization can be largely improved. There-

fore, there is a need to extend and re-define PIT’s functionality. FIB is a routing

table constructed per name prefix. ICN interests are broadcast on one or more

interface recorded in the routing table. Using broadcast is advantageous due to

the fact that more caches can be explored. However, the table-driven routing does

not always fit needs in ad-hoc networks and thus also requires a re-definition.

The above design follows a late-binding approach in which no name-locator

mapping is handled before the interest is sent. Data consumer mobility is well-

handled when the end-to-end connectivity is relatively stable in such design due

to its one-interest-one-data nature. A data consumer can re-initiate interests to

obtain the data cached by relays when it relocates. However, data producer mo-

bility is more difficult to conquer as it is assumed that prefix naming is based

on organization names which are bound to relatively static locations. ICN may

mitigate effects of data producer mobility by multi-sourcing (i.e. relying on mul-

tiple previously established caches), but this naive design may be problematic in

vehicular networks. In typical VANET deployment where a node uses only one

interface, the interface-selecting broadcast design results in all nodes flooding all

Interest Packets they received. When data producers and relays are moving, re-

lying on interest flooding may lead to data storm, which is induced by duplicate

cached data from multiple data holders. Therefore, the flooding traffic will lead to

extreme bandwidth consumption. One solution is to construct an overlay network

on top of IP layer. However, implementing point-to-point unicast overlay ICN is

costly in VANET because (1) end-to-end route construction and maintenance be-

tween overlay nodes induce high control overhead and (2) the overlay design ends

up performing point-to-point transmission without exploiting the broadcasting

nature of wireless channel. In fact, it is well known that the routing table-driven

protocols are not suitable under high mobility [9]. In ICAN, we exploit oppor-
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tunistic routing [8] to utilize wireless broadcast nature for better robustness.

2.1.2 Alternative ICN designs

Alternative ICN designs have also been proposed and discussed. For example,

Data-Oriented Network Architecture (DONA)[10] is another well-known content-

oriented framework which is defined as an overlay over IP network. In DONA,

a content name is formed as cryptographic hash of the data producer’s public

key following by a data object identifier. Unlike NDN, DONA takes an early-

binding approach in which data producers register the name-locator mapping

to servers called Resolution Handlers (RHs). The RHs form a tree structure

similar to the DNS system, and data is searched by lookup following the tree

structure. Data producer mobility is easier to resolve in DONA since the name-

locator mapping must be re-published when data producers move. However, the

challenges in VANET are the significant re-publishing overhead and the time

and space complexities to maintain RH tree structures. Data consumer mobility

can create problems in DONA as well. Mobile data consumers must re-establish

connections to new RHs as they move, and consequently introduce larger delay

and overhead for data retrieval. Being implemented on top of TCP/IP, current

DONA implementation also requires significant modifications to be applied to

VANET.

Network of Information (NetInf) [11] also utilizes a name-resolution approach.

NetInf assumes flat naming. Data producers publish the contents and their

locators via the Name Resolution (NR) service. Different from DONA, Net-

Inf constructs the NR service by a Multi-level DHT (MDHT) [12] supporting

both data and metadata searching. NetInf also requires NR service connection

re-establishment under data consumer mobility and locator updates under data

source mobility.
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Although the existing ICN proposals differ in details such as the use of opaque

content identifier [10] or human readable hierarchical name [7], we identify the

following common attributes of ICN:

• Uniquely identifiable content naming: Different from the host-based model,

ICN decouples the contents with locations to better suit application needs

and to enable caching. All ICN proposals assume contents are uniquely

identifiable at network level so that the network can identify the content to

be transmitted.

• In-network caching: The named contents enable the pervasive in-network

caching. In the extreme cases, all routers may cache content segments flow

through. The caching capability of ICN is naturally creates a multi-source

environment and thus is potentially beneficial under mobility.

• Receiver-driven transport: As contents are available at multiple locations,

the idea of a particular network host serving certain contents becomes ob-

scure. In such setting, the content consumer, or the receiver, must actively

retrieve and control the content transfer.

• Name-based forwarding: In ICN, content is searched and retrieved based on

its identity instead of the IP address of the node on which it resides. The

interest forwarding of a content request is performed based on the content

names. This gives the network the ambiguity of selecting the destination

a content request to be sent to. In most ICN proposals, it is assumed the

request is forwarded to the nearest replica.

• Built-in security: the names are bound to the intent of the publisher, and

thus help ease the design of security mechanism such as integrity checking

on the user side.
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In this paper, we focus on analyzing the general benefits of ICN in ad-hoc

networks. For simplicity, we choose to build ICAN as an extension of [7] as (1)

it is the most mature ICN architecture to date, and (2) it depends the least on

centralized controller in the original design and thus is the easiest to adapt to

ad-hoc networks.

2.1.3 Mobile ICN

ICN in mobile environments is a recently emerging research area. For mobile

networks with infrastructure support, J. Wang et al. propose an NDN-based

vehicle data collection system in [13]. This system requires special name prefixes

to be reserved and announced in advance. J. Lee et al. propose a proxy-based

scheme to increase the efficiency of mobile retrievals [14].

As for MANETs, in [15], S. Oh et al. propose an overlay tactical ICN approach

and study its feasibility and performance via implementation. In [16], M. Varvello

et al. analyze the performance of reactive flooding, proactive flooding, and Ge-

ographic Hash Table (GHT) in ICN. Proactive flooding floods the data object

names and locations periodically. GHT maintains the data object information at

fixed locations that can be calculated by pre-defined hash functions. In contrast,

reactive flooding naively floods all Interest Packets to retrieve Data Packets. The

results in [16] analytically show that the reactive flooding approach outperforms

the other two in both latency and data availability.

The ICN architecture proposed in [7] in its original form assumes the medium

is reliable enough and the ”faces” of transmissions are relatively stable, which

are different from the nature of ad-hoc networks. Most existing ad-hoc ICN re-

search propose to build a broadcast-only system to better utilize the wireless

broadcast channel and minimize the control overhead under mobility. The first

such proposal is [17]. In [17], Meisel et al. propose a low-overhead forwarding
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protocol for MANET ICN. Each node maintains distances to known data ob-

ject names and node names. The requests are broadcast but propagated to the

nearest data holder via shortest path using opportunistic routing [8] based on

the destination distances estimated by relays. In [18], Amadeo et al. describe a

multi-hop MANET ICN architecture in which the content consumer locates con-

tent provider using controlled flooding. Nodes keep track of the content provider

IDs and use this information to perform consumer-based provider selection. The

transmissions are broadcast but counter-based suppression is applied to reduce

unnecessary transmissions. The extended works [19][20] examine similar system

in VANET and show improvements on content delivery over IP-based VANET us-

ing AODV in a small scenario in which 5-25 consumers download contents from a

road-side unit. However, the counter-based broadcast suppression approach may

incur unnecessary transmissions and packet loss due to the interference and in-

accurate node distance information under high mobility and heavier application

traffic.

The state-of-art VANET ICN research mainly focus on reducing the control

overhead of locating mobile content provider by methods that commonly applied

to host-based VANET. In this study, we take one step forward and explore the

common effects behind the potential system design options for multi-hop, con-

nected ad-hoc networks. We start by assessing the caching benefits in vehicle-to-

vehicle communications using synthetic user behavior model, and then continue

the study of content discovery mechanisms according to our findings.

2.2 Ad-hoc routing

As an architectural solution, a critical aspect of ICAN design is the efficient routing

mechanisms. In this study, we identify two representative VANET scenarios:

urban VANET and emergency VANET. In urban VANET, the vehicle density is
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high while obstacles often block the transmissions, leading to a network with rich

though sometimes intermittent end-to-end connectivities. In emergency VANET,

the network is sparse and the connectivity is rare. End-to-end sessions are nearly

impossible even in short term. In the following, we review the literature on the

ad-hoc routing mechanisms for these scenarios.

2.2.1 MANET routing

The traditional IP-based multi-hop mobile ad-hoc routing can be divided to three

categories: proactive routing, reactive routing, and opportunistic routing.

IP reactive routing consists of two phases: route discovery and route main-

tenance. Route discovery serves the purpose of locating destination host and is

accomplished via flooding. A source node first floods a routing request to search

the destination node. Once the destination is found, a routing reply is forwarded

back to the source node via a single path with the lowest cost. The cost at each

hop is collected in the process of request flooding. Data transmissions then take

place using the single path constructed. Route maintenance is performed explic-

itly with routing control messages when a topology change is detected and the

previously-built path is consequently broken. Popular reactive IP routing mecha-

nism includes AODV [21], DSR[22], and their variations.

Proactive IP routing protocols such as Fisheye State Routing (FSR) [23] and

Optimized Link State Routing Protocol (OLSR) [24] are based on proactive host

advertising, utilizing periodic background routing information exchange. Based on

the received routing information from other nodes, each node construct routing

tables for each possible destination host with link-state routing [25] technique.

The common advantage of this type of routing protocols is the low-latency route

access and consquently QoS guarantee once the routing states converge. However,

they also require excessive overhead for routing information exchange. Researchers
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have devoted hard efforts on reducing the advertisement overhead. For example,

OLSR uses multipoint relays (MPR) [26] to reduce the number of superfluous

broadcast transmissions.

Opportunistic routing such as Extremely Opportunistic Routing (ExOR) [8]

defers the choice of the next hop until the forwarding set receiving the packet. It

is a good example of exploiting wireless broadcast nature. Each node maintains

its distance to destination based on a distance metric. Instead of choosing a static

route, all packets are broadcast. Upon receiving a broadcast packet, nodes set up

a backoff time proportional to its distance to the destination. During the backoff,

if a node hears the packet being re-broadcasting by other nodes, it cancels the

scheduled transmission of the same packet. Otherwise, the node re-broadcast the

packet once the backoff ends. The advantage of such approach is its minimum

control overhead since forwarder selection is deferred to the time of receipt. The

major challenge comes from the accuracy of estimating the distance metric of each

node.

2.2.2 VANET routing

VANET routing research shares the reactive and proactive routing ancestors from

MANET research. In addition, geo-routing is the most promising routing method

in VANET. This routing family utilizes the Global Positioning System (GPS)

equipped by the host nodes to provide their precise location information, which is

then utilized to calculate the distance to destination host. Based on the distance

information, a forwarder set, which contains all nodes nearer the destination than

the previous hop, can be defined, and packets approach the destination relying

on the set of eligible forwarders hop-by-hop. The details of actual forwarder se-

lecting vary for different protocols. In Location-Aided Routing (LAR) [27], the

forwarder set is only used for the purpose of routing interest limited flooding. The

data forwarding is based on the resulting shortest path constructed in a way sim-
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ilar to that of DSR. In Greedy Perimeter Stateless Routing (GPSR) [28], nodes

periodically broadcast its GPS coordinate to one-hop neighbors. Packet senders

are responsible for specifying the next hop IP address of the best forwarder who

is closer to the destination. The common advantage of geo-routing protocols is

the relatively small control overhead and consequently improved routing perfor-

mance. However, additional care must be taken considering the potential location

inaccuracy in a mobile environment.

2.2.3 Disruption tolerant routing

Disruption-Tolerant Networking (DTN) usually refers to networking when the

scenario is sparse and thus it is difficult to obtain full topology information at

each node. Most routing protocols in such environments are variations of Epidemic

Routing (ER) [29]. ER diffuses messages into networks in a similar way as diseases

using the cache-and-forward technique. To reduce the overhead and delay of

ER, MV routing [30] opportunistically selects messages to forward to encountered

nodes. Follow-up works [31][32] utilize mobility patterns or contact history to

further improve the performance.

2.3 Network coding

It has been show that network coding is beneficial in cache-capable MANETs

[33, 34]. Lee et al. showed that by exploiting dissemination of coded fragments of

files, network coding is able to greatly decrease the delay required to deliver files.

In [35], Montpetit et al. have identified network coding ICN as a strategy with

tremendous potential. In [36] Wu et al. implemented and evaluated the benefits

network coding provides in improving the cache hits in ICN.

MORE [37] is an adaptive network coding method is proposed for disruptive

network. In MORE, relays opportunistically form multiple paths on which pack-
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ets are re-encoded and forwarded. Later work such as CodeMP[38] further studies

adaptive network coding based on measured loss rates for TCP sessions. On the

other hand, many existing adaptive network coding works in DTNs focus on ap-

plying network coding to reduce the number of transmissions of epidemic routing

or in conjunction with probabilistic forwarding. In [39], Y. Lin et al. studies the

tradeoff between performance and resource consumption in DTN and proposes to

spread slightly more-than-needed number of coded packets to reduce the num-

ber of transmissions. In [40], M. Chuah et al. proposes CANCO, which spreads

coded packets to only some of the nodes encountered by delivery predictability

and friendliness metrics.

In this study, we implement and examine network coding performance in dis-

ruptive content-based network platform.
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CHAPTER 3

ICAN: An Information-Centric Ad-Hoc

Networking Architecture

In this chapter, we give an overview of the ICAN system architecture. We start

from a discussion of the system requirements, and then proceed to introduce the

representation and definition of network entities and context, the APIs provided

by the system, and finally the general functionality on routing and caching of the

system.

3.1 Requirements

We first discuss the key requirements of an information-centric VANET architec-

ture in the following.

1. Context-aware operations

It is well-known that the challenges in VANETs mainly come from two as-

pects: mobility and error-prone wireless channel; both lead to intermittent

connectivity and unstable routes. The solutions are best made with the

knowledge of context. For example, network condition-related context is

helpful and necessary in ad-hoc routing decisions: an efficient multi-hop

routing is the target solution in a dense urban scenario (say, a sudden power

outage in New York City). In contrast, in a sparse rural network, an effi-

cient DTN routing protocol [41][29][42] is the desired solution. On the other

hand, application-related context is important for efficient ICN caching. For
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example, it is not useful to keep a live video packet in the cache for a

day. The ICN concept enables the possibility of embedding context aware-

ness in packet processing and routing by association of packet names and

application-related contexts. Therefore, we choose ICN as the core design

of our system.

2. Push-based and pull-based transport support

The current ICN model adopts a pull-based approach in which a receiver-

oriented interest packet is required to transmit a corresponding data packet.

Most traditional Internet applications fit this communication style, e.g. web

browsing through roadside or mobile access points. However, many appli-

cations that are important in ad-hoc networks, such as private messaging

and emergent notification, are push-based. The data of these applications

must be generated and delivered in real-time. Although it is possible to

realize sender-driven applications with the pull-based ICN model [43][44],

these proposals require the interests be registered periodically in advance.

However, the periodic registration may backfire in ad-hoc network as it cre-

ates large overhead under high mobility. Therefore, it is necessary to include

push-based transport.

3. Disruption-tolerant delivery support

It is common that in ad-hoc network that the scenarios are intermittent.

Currently, the ICN model assumes the interest must be sent in an end-

to-end fashion to retrieve the data. However, in cases where the network

is mostly partitioned, the data objects must rely on a carry-and-forward

delivery. It is important that the system also supports disruption-tolerant

networking. Of course, the application must be delay-tolerant to leverage

the DTN transport.

4. Extendability
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In order to embed context awareness in the networking architecture, it is

necessary to define a representation of context. One lessen we learned from

the history of Internet is that we cannot predict all demands for the fu-

ture. Therefore, it is important to preserve extendability in the context

representation design.

5. Fast deployability

ICAN aims at enabling fast deployment in various scenarios on regular mo-

bile device. While it is possible to obtain hardware support, a MANET or

VANET by itself must adapt to the current scenario and should be quickly-

configurable. Therefore, we assume ICAN will be implemented as an overlay

in the form of software applications for the ease of deployment and upgrades.

3.2 Context awareness foundation

3.2.1 Network entity representation

The context awareness depends on the naming of network entities. With a univer-

sal network entity naming, we are able to identify the context of each chunk, or

packet, by mapping its associated name or target destination(s) to an application-

related or network condition-related context in the core of networking platform. In

ICAN, data, nodes, and geo-locations are all identifiable. The following explains

how each is identified:

1. Data: Following the hierarchical naming in [7], each data chunk is uniquely

identified and associated with data object it belongs to. We enforce the fol-

lowing data chunk naming format: application id/data object id/chunk id.

Each application has a globally unique ID. Data object ID is defined by

the application and must be unique in the application’s object namespace.

Chunk ID is the sequence number of a data chunk within the data object
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and is automatically generated when the chunk (i.e. packets) is created.

2. Node: Each node has a unique node ID. For compatibility, we assume IP

or MAC address can be used to identify a node.

3. Geo-location: Considering the applications requiring geocast ability, we

promote the geo-location as a named entity. The naming of geo-location is

simply assumed to be the GPS coordinates of a location plus a diameter.

3.2.2 Context and metadata

We categorize the context used by ICAN as application-related context and net-

work condition-related context. The application-related context is represented as

the metadata of a data object or an application. For extendability, we assume

the metadata format can be configured using XML [45]. Note that the metadata

is not sent in XML format. Instead, XML is used for software configuration to

define the meaning of received encoded context.

Attribute Required Value Default Value

Content type Yes Offline/Real-time Offline

Effective Time Yes [0ms, ∞] ∞

Publicity Yes Public/Private Private

Popularity No High/Medium/Low N/A

Max delay No [0ms, ∞] N/A

Table 3.1: Application Metadata Format

Applications are responsible for providing part of metadata of its data objects.

The metadata format implemented is shown in Table 3.1, and a list of sample

definitions are in Table 3.2. Three attributes are required: content type, effective

time, and publicity. The content type indicates whether the application content
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is created in real time. Applications also indicate the effective time of its data.

For example, a news website’s homepage may have an effective time of 4 hours,

as shown in table 3.2. Another required attribute is publicity. We define a data

object as private if it is access-restricted (e.g. encrypted data such as Facebook

notification). If the application does not provide metadata, default values are

used. Optional metadata fields may be indicated by the application designer or

generated by the system automatically. In our example, the maximum delay is

indicated by the application, and the popularity is collected based on the statistics

of request frequency.

Application-related metadata can be disseminated periodically or on-demand.

We define a default metadata dissemination service for answering on-demand re-

quests. In general, the application-related metadata is retrieved on-demand for

most network entities. Only the emergent applications or service may need peri-

odic application-related metadata dissemination.

ICAN generates the network condition-related context automatically. Nodes

maintain their own context including its location, a list of known connected nodes,

and a list of out-of-contact nodes. We assume ICAN nodes use localization meth-

ods such as GPS to determine their locations; the list of known connected nodes is

maintained by recording overheard network traffic; the list of out-of-contact nodes

is maintained by implicitly detecting the retransmission failures towards known

destination.

The location of a node is embedded in every packet forwarded by the node. All

nodes collect the location of its neighbors, from both processed and overheard data

chunks. In this way, ICAN implicitly collects the network condition-related con-

text necessary for processing and adapts suitable forwarding and caching strategies

accordingly. The complete network condition-related metadata are not dissemi-

nated by default, but is available upon request.
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App or

Data

Object

Name

Context

type

Effective

time

Public-

ity

Popula-

rity

Max de-

lay

Facebook Offline ∞ Private N/A

Car-A/

break-alert

Real-time 1 min Public High 2ms

Map/

Westwood-

blvd

Offline ∞ Public High N/A

Traffic/

Westwood-

blvd

Real-time 15mins Public High N/A

NYTimes/

homepage

Offline 4hrs Public Medium N/A

Table 3.2: Sample metadata

3.3 System Overview

3.3.1 Application API

The ICAN APIs provided for user applications are as follows.

1. query(data object name, valid time): for the requester to retrieve/subscribe

to the specified data object. The query is valid for the period of time

specified.

2. put(data object name, data object content , metadata): for the data provider

to publish a data object with a certain data name with a the associated
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metadata. If metadata is not specified, the default value of the associated

application is assumed.

3. set(data object name, metadata): for the provider to specify the metadata

of a data object. If metadata is not specified, the default value is assumed.

4. set(application name, metadata): for the provider to specify the metadata

of an application.

5. push(data object name, data object content, metadata, destination names):

used to push a data object to a certain destination. The destination is either

a set of nodes or a geo-location. With this API, any push-based application

using unicast, multicast, or geocast can be implemented.

3.3.2 System architecture

Figure 3.1 illustrates a typical ICAN node. The application layer publishes data

objects and provides metadata to ICAN by the application APIs. The data objects

then will be fragmented to chunks, named accordingly, and saved to the content

store.

ICAN is an all-broadcast system. At the bottom, the broadcast layer ensures

reliable hop-by-hop broadcast-based transmission (see 3.6.2). The data network-

ing layer extends the current ICN architecture with context, push transport, and

DTN mode support. It consists of four basic components: context plane, content

storage plane, traffic control/aggregation plane, and routing plane. The context

plane takes care of the collection, resolution, and storage of the context. It is re-

sponsible to parse received packets, collect network condition-related context, esti-

mate network conditions such as capacity and loss rates, maintain neighbour lists

and out-of-contact node lists, and records application and data object metadata.

In addition, it resolves the context for a given packet and provides information

needed by the context-aware caching, routing, and traffic engineering decisions.
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Figure 3.1: ICAN System Architecture

The content storage plane consists of the content store and is responsible for frag-

menting the locally published data objects, and opportunistically advertising the

cache summary of delay-tolerant data objects. The traffic control plane handles

the traffic engineering and packet aggregation to better utilize the precious ca-

pacity of the wireless channel. Unless the data source is judged out of contact,

ICAN follows the multi-hop communication model of ICN for pull-based data re-

trieval. In this case, we keep the ICN PIT in [7] to aggregate interests for the

same data chunks from different nodes. This reduces the traffic load as the data

follows the breadcrumb of the interest. On the other hand, if the destination is

detected unreachable, the packet is delivered in DTN mode (3.4.2). DTN packets

are deferred, compiled at the node level and an epidemic style data retrieval is

pursued. The routing plane is in charge of packet routing, that is, when and if a
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packet is re-broadcast. Based on the application-related and network condition-

related context, the packets are categorized as one of the following: pull interest,

pull data, push data, DTN request, or DTN data. Each is handled by a dedicated

routing engine. Each routing engine is configured with a corresponding forward-

ing protocol. Note that as the context format is extendable, different algorithms

can be easily implemented as plug-ins to extend any of the routing engines.

3.3.3 System service

ICAN considers common data query services such as metadata dissemination and

network entity discovery services as a special type of application. These services

are installed on every node. Unlike the user applications, services use pre-defined

service name prefixes concatenated by the node or geo-location identifier to in-

dicate the information being queried. For example, a node location query of a

location service is named location service/node ID

ICAN allows services to be installed at system level, and thus the service

requests can be answered by any node that has the specified service installed,

leveraging the context and caching functionalities. This means services such as

node location or content discovery are distributed, better suited the ad-hoc envi-

ronment.

3.4 Packet Forwarding

ICAN includes two packet networking paradigms. By default, the destination

(data source or target node) is assumed reachable and the end-to-end multi-hop

forwarding approach is pursued. If the destination is known to be or is judged

unreachable (i.e. by timeout), and if the application is indicated delay-tolerant,

the packet is processed in DTN mode. In the following, we summarize the packet

processing procedure for these two modes.
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3.4.1 Packet processing: multi-hop forwarding mode

When the data communication is initiated by the receiver, a pull-interest1 must

be sent to retrieve a data chunk. We summarize the pull-based packet process-

ing procedure as follows. Incoming interest packets from application, service, or

broadcast layer first enter the context plane. After inspecting the packets, up-

dated metadata is stored in the context knowledge base. Next, ICAN searches

the content store to find matching data. If nothing is found, the interest name

prefix is matched to applications and installed services. If the prefix matches an

application, ICAN queries the application with the data object name to get the

on-demand data object, fragments it to chunks, and sends the requested chunk

out to the requesting interface. If the prefix matches a service’s, the distributed

service may or may not reply to the interest after inspecting it. If the service

decides not to answer the query, the interest packet is returned to ICAN for

further processing. At this point, the node searches its PIT to decide if it has

previously sent a interest with the same name. Pull-interests from different re-

questers are integrated to avoid redundant transmissions, which means the relay

does not transmit the interest packet again but only adds the requesting face to

the existing PIT entry. Otherwise, the interest to be forwarded is handed to the

interest routing module. Based on the context, the interest routing module de-

cides whether to broadcast the packet right away. If the interest is not consumed

by the corresponding data after several retries at the requester node, ICAN checks

the corresponding application’s context and if it is delay-tolerant, the interest is

then turned to DTN mode.

Pull-data packet processing is as follows. A pull-data packet along with meta-

data it carries are inspected by the context generator. The data content is then

cached by CS. At this point, CS consults the context resolver for caching deci-

sions. Later, if the data packet is not targeted to a local service or application,

1In the later text, we use pull-interest and interest interchangeably.
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it is handed to the pull-data routing module, which lets the packet follow the

breadcrumb path of the interest.

When the data delivery is initiated by the sender, the data packet is processed

as a push-data. Push-data packet processing is similar to pull-data packet process-

ing. The major difference is the routing module: the push-data is handed to the

push-data routing, and a multi-hop routing method using node or geo-location as

final destination of the packet will be used to deliver the packet to its destination.

3.4.2 Packet processing: disruption tolerant mode

The disruption-tolerant mode of ICAN (DT-ICAN)2 subsumes both the family of

peer-to-peer content dissemination network (e.g. Haggle[46]) in which interests are

propagated in an epidemic fashion as well as the family of ICN [7] in which data

is cached as uniquely identifiable chunks. This leaves us higher data availability

in disruptive ad-hoc network and in the mean time preserves the possibility of

content-aware caching/routing design. Note that we focus on the epidemic data

requesting in DT-ICAN, as the applications that require push-based transport are

usually emergent and not delay-tolerant.

DT-ICAN reduces the bandwidth consumption by per-node interest aggrega-

tion. This is done by splitting the functionality of interest to two periodically

broadcast control messages: the node-interest, which indicates the data objects a

node wants, and the request, which represents the data object the node is currently

trying to retrieve within one hop. In addition, each node periodically advertises

its cache summary to assist efficient content requesting. Node-interest, request,

and cache summary are all represented by Bloomfilters [47].

1. Node-Interest

To improve the scalability in disruptive networks, nodes do not request data

2https://github.com/uclanrl/dt-icansim
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chunks by chunk-based pull-interests. Each node aggregates the data object

requests from its applications as a node-interest. The node-interest is com-

piled in file object basis. In other words, a node indicates the file object IDs

instead of chunk IDs to speed up the retrieval. Instead of instantly flood-

ing node-interests, nodes opportunistically and periodically propagate the

node-interests received from others over multiple hops when the bandwidth

is sufficient. (6.1.2)

2. Request

As the encounter intervals in a sparse network can be very limited, the node-

interests do not trigger data transmission immediately because otherwise the

amount of data transfer triggered can be out of control. We introduce the

request message, which identifies a subset of data objects that a node is

willing to receive at the present time. Note that a request may consist of

not only data objects the node itself subscribes but also the data objects

others are interested in.

Requests are broadcast only within one hop to retrieve data from neighbours.

When a new request comes in, a node examines the request with the names

of data in CS, compiles a list of data objects to offer, and then initiates data

chunk transmissions in order using the handshake procedure (6.1). The

request transmission may be triggered when new contact is discovered or

periodically. Note that the node has the freedom to decide what contents to

pull based on the volume of node-interests it receive, the network condition,

and its local content prioritization policy. We assume nodes decide the

amount of data to retrieve from the newly-encountered neighbor based on

the available bandwidth 6.1.3, and aggregates the retrieval in one request to

prevent overwhelming data transmissions from multiple caches.

3. Cache summary

Each node periodically generates its own cache summary ane broadcast it to

26



one-hop neighbors. The cache summary includes the data object IDs of fully

cached file and chunk IDs of partially cached ones. The cache summaries

are leveraged by nodes to prioritize which data chunks to send and request.

Without cache summaries, nodes may blindly pull redundant data based on

previously received node-interests. All nodes also update neighbors’ cache

summaries by the data object names carried in the control messages and

data overheard.

More details of DT-ICAN operations will be described in 6.1.

3.5 All-broadcast routing

3.5.1 Basic components of routing plane

In order to better utilize the caching capability of ICN, we design ICAN as an all

broadcast networking platform. We hereby describe the basic routing principles

of the routing engines.

1. Name-based multi-hop packet propagation

As the pull data is forwarded via breadcrumb path of pull-interest, the multi-

hop delivery path of pull-data depends on the interest routing which delivers

the pull-interest packets by data chunk name. On the other hand, the push-

data will be forwarded based on the node or geo-location ID. Fortunately,

both can be done using the same name-based routing protocols, as all desti-

nations are named in ICAN. The real challenges of routing and forwarding

come from the lossy channel and high mobility. Therefore, we adopt the op-

portunistic routing concept in ICAN. For multi-hop delivery, ICAN floods

the packets when the destination location is unknown, but directs the pack-

ets to known locations via one or more opportunistically constructed paths

otherwise. In 3.5.2 and 3.5.3, we will introduce the concepts of our ap-
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plied mobility-resistent name-based flooding and the proposed geo-assisted

opportunistic routing, respectively. All routing protocols proposed in the

following chapters are variants of the two concepts. For example, an ex-

tended geo-assisted opportunistic routing protocol aiming at urban VANET

will be illustrated later in chapter 4.

2. DTN routing

When the target destination is unreachable, a dissemination of the node-

interest is needed. Most dissemination-based protocols in such environments

are variations of Epidemic Routing (ER) [29], which diffuses messages into

networks by the cache-and-forward technique. The overhead of epidemic

propagation can be aggressively reduced by techniques in which a node se-

lects to which encounter nodes a message is forwarded [31][41][42]; many

of these methods utilize mobility patterns or contact history to further re-

duce the unnecessary propagation. While these techniques can be easily

integrated in ICAN as new DTN interest routing plugins, we note that the

study of epidemic dissemination is beyond the scope of this study and we as-

sume a simple epidemic dissemination of DTN interests in our experiments.

3.5.2 Low cost mobility-resistant flooding

In many situations such as unknown location content search and limited-scope

data pushing, flooding-like packet propagation is necessary. The simplest form of

flooding in an all-broadcast system is to let all nodes rebroadcast the packet as

long as the nodes are within the specified flooding range (i.e. restricted by hop

counts, or defined geographic area). However, this approach is costly as many

redundant packets broadcast will occur in a dense scenario. There have been

abundant research on the flooding issue in wireless environment; most involve

computing a Multi-Point Relay (MPR) [26] to select the proper forwarding nodes
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achieving lowest cost. However, it is well-known that in a highly mobile network

such as vehicular network, the topology changes so rapidly that it is very difficult

to compute an optimal MPR. Therefore, instead of computing MPR, we apply a

timer-based Smart Flooding (SF) mechanism.

SF utilizes the timer-based rebroadcast concept [8]. The basic idea is as follows:

when a node receives a packet, it first decides if it is an eligible forwarder of

the packet. Afterwards, the eligible forwarders contend for the opportunity of

rebroadcast. Each eligible forwarder sets a rebroadcast timer based on a function

of its distance to destination. Upon the expiration of its rebroadcast timer, the

forwarder sends the packet. Before the timer expires, if the node hears other nodes

rebroadcast the same packet, it may cancel its scheduled transmission. Hence,

among all the nodes within a small range, only the highest-priority forwarder will

rebroadcast the packet first due to its shorter timer.

In SF, all nodes receiving a packet are eligible forwarders and they all join the

contention. The primary goal is to expand the propagation range. In other words,

the farther neighbors must be given higher priority. Therefore, the SF expiration

timer of an eligible forwarder is calculated as follows.

Tf = Tdist
(Dmax −min(Dmax, Dtransmitter))

Dmax

(3.1)

Tdist is the defined maximum waiting time, Dmax is the node’s maximum trans-

mission range, Dtransmitter is the distance from the node to the last hop who it

first receives the packet from. Note that the farther this node is from the last hop,

the shorter it needs to wait for rebroadcasting the packet.

3.5.3 Geo-assisted opportunistic routing

A reliable single path routing mechanism is needed when a packet has a target

destination. In ICAN, we associate all named destinations to their geographic

coordinates and design a geo-assisted Smart Single-Path forwarding (SSP) for
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Figure 3.2: Geo-Assisted SSP distance estimation

the purpose. SSP also utilizes the timer-based rebroadcast mechanism described

above. Unlike traditional routing algorithm in which a next hop is determinis-

tically specified, SSP is resilient to rapid topology changes with minimal control

overhead.

In SSP, nodes closer to the destination are preferred. We define relay nodes

who are closer to the destination carried in the packet than the last hop is are

eligible forwarders and only the eligible forwarders will join the contention. The

ineligible nodes automatically drop the received packets. The eligible forwarders

are prioritized by their normalized distance to the destination; thus, their rebroad-

cast timer is calculated as follows:

Ts = Tdist
dref
dmax

(3.2)
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dref is the distance from the node to the reference point and dmax is the maximum

distance between the eligible forwarders within last hop’s range to the reference

point. The reference point (position R in Figure 3.2) is used to normalize the dis-

tance to destination of all eligible forwarders and is defined as the closest possible

geo-coordinate to the destination within last hop’s transmission range. In Figure

3.2, A and D represents the last hop and the destination, respectively.

3.6 Broadcast layer

3.6.1 Data storm control

The all-broadcast system incurs an issue particularly in ad-hoc network. Since

multiple caches of the same data chunk may exist in a neighborhood, it is likely a

broadcast interest may lead to a data storm, meaning many caches try to broadcast

the corresponding data at the same time. To migrate the issue, for pull-data, all

cache nodes randomly select a short backoff time, and the data transmissions are

suppressed if the cache hears another data transmission before the timer expires.

3.6.2 Reliable broadcast

All transmissions in ICAN are done by MAC layer broadcast to better leverage the

wireless broadcast channel. The consequence of this design is that there is no sup-

port from MAC layer retransmission. Therefore, we include a reliable broadcast

mechanism to guarantee robust transmission with minimum retransmissions.

The reliable broadcast utilizes the packet names a node heard to ensure deliv-

ery. To avoid severe congestion introduced by duplicate packets, all packets carry

nonce in our system. Packets are retransmitted, up to a certain limit of times, if

a relay node does not detect a progress is made. A node judges there is a progress

made for a particular packet if one of the following conditions is met:

31



1. A packet carrying the same nonce is received from neighbors

2. The node receives an ACK that acknowledges a nonce carried by a data

packet. Note that this implies that when a packet reaches its destination,

the destination must send an ACK with the received packet nonce to stop

the retransmission from the last hop.

3. The node receives a data packet carrying the same name as that of the

previously received interest.
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CHAPTER 4

Exploring The Parameter Space In Urban

VANET

It is well known that in urban VANET, the topology changes rapidly, and thus

route maintenance and discovery of traditional IP networking are costly. There-

fore, it is natural to believe that the pervasive caching and multi-path nature of

ICN are likely to be beneficial, that is, to provide better content availability under

ICN paradigm. However, the tradeoff between the content availability gain and

the incurred overhead of different design options in routing and caching require

an in-depth study. In this and the following chapter, we concentrate on discussing

the technical challenges of urban VANET use case. We evaluate the contribution

of possible caching and routing design options by extensive simulation through

synthetic application and vehicle traffic traces. To our knowledge, this is the first

study carrying out such simulation even in the IP-based VANET field. Our results

illustrate the performance gain of an ICN-like VANET over IP-based, peer-to-peer

VANET.

4.1 Design Options

4.1.1 Caching

We study three general caching options for urban VANET. Namely, pervasive

caching (ALL), peer-only caching (P2P), and no caching (NONE).
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• Pervasive caching (ALL): pervasive caching is the standard assumption of

ICNs; it assumes that all nodes in the network will cache all data chunks they

received. When the cache space is insufficient, the new chunk is accepted

and one of the old chunk must be ejected.

• Peer-only caching (P2P): peer-only caching is considered the state-of-art of

VANET caching. While VANET applications are still in its infancy, many

VANET applications assume the system is built as an overlay P2P network

[48] in which the participating peers carry and forward the information pub-

lished by its peers. In this case, only the peers interested in the same appli-

cation files may cache the file. We consider this option a baseline of VANET

caching paradigm.

• No caching (NONE): we refer to the system without caching capability as no

caching. In other words, no caching represents a pure host-based approach

in which the contents are simply forwarded but not replicated.

As one may expect, the more nodes caching the same information the higher

availability of the information will be. While this conclusion comes in natural, we

are interested in investigating the performance gain of pervasive caching over the

other two approaches in the mobile ad-hoc network, as there is a tradeoff between

the complexity of cached content management, the required cache size, and the

content availability. We expect the results will shed the light and provide insight

on whether a pervasive caching is worthy of the processing and space overhead

incurred.

4.1.2 Routing

We study two routing design options for urban VANET. Note that here we assume

a reliable route can be found and therefore we focus only on the destination

selection. The two potential options are nearest replica routing (NR) and
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source-only (i.e. origin-only) routing (SR), as defined in [49].

• Nearest replica routing (NR) is the default behavior assumed in current

ICN systems [7][49]. The purpose of nearest replica routing is to take full

advantage of the data cached at the routers. In nearest replica routing, the

interest is sent to the cache closest to the requester.

• Source-only routing (SR) means that the interest is directed towards the

original source (publisher). It is still possible that a cache on the path

between the data source and the requester may be utilized, but the cache-

hit probability may be lower and the response time may be longer if the

nearest cache has moved to a location off the path from requester to origin.

In both approaches, a path is constructed between the requester and the des-

tination of the interest. Note that although the process to locate a content by

name of ICN, referred as content discovery, is an important issue, our focus in

this chapter is to study the best achievable performance of each design option.

Hence, we assume there is an efficient way to locate data object with constant or

near-negligible overhead. In reality, to achieve nearest replica routing in VANET,

the locations of replicas for each piece of content must be recorded so that one

can ensure the nearest replica is targeted, requiring high maintenance overhead.

Therefore, it is important to evaluate the performance gain of nearest replica rout-

ing so that one can gain the insight for content discovery design. For this purpose,

in the simulation in this chapter, the locations of nearest caches and data sources

are obtained without cost. Note that our conclusion will only be reinforced if the

content discovery cost is considered.

4.1.3 Problem statement

[49] looked into the design space of ICN in the wired Internet and pointed out that

the benefits of ICN’s ubiquitous caching and nearest replica routing are limited
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and can mostly be obtained by incremental implementations. We expect the

situation will be different especially in sparse and disruptive VANET, as end to

end connectivity cannot be maintained and pervasive caching is a must for carry-

and-forward. However, unlike in disruptive MANET/VANET, in urban VANET,

the content are in general highly reachable despite the frequently changing routes,

and thus it is necessary to perform an extensive study considering the vehicle

movement and the application patterns to best understand the routing and caching

design options and their combined effects in the urban VANET environment.

Inspired by [49], we study the intersection of the ICN paradigm and vehicle-

to-vehicle communication in this chapter. We aim at answering two questions:

1. How much is the gain of ICN pervasive caching compared to the existing

peer-only caching paradigm in VANET?

2. Is it necessary to monitor the locations of all replica? In other words, does

nearest-replica routing achieve significant gain over source-only routing?

4.2 Simulation settings

The simulation is conducted using QualNet 6.1. Since we focus on exploring the

general VANET ICN design space, our simulation is based on an abstraction of

non-DTN ICAN, in which the data is chopped to chunks and each chunk has a

unique name that associates to its parent data object, the system is all-broadcast

to better explore the cached contents at relays or peers, and the data follows

the breadcrumb path of interests. All simulations are run 1000 seconds. The

applications start at 400 seconds and continue being active for 300 seconds. The

detailed settings are described in the following.
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Figure 4.1: Simulation map

4.2.1 Mobility and propagation model

We simulate an urban VANET scenario using a 2km2 Washington DC map from

Tiger/Line file [50], as shown in figure 4.1. Each road segment is 500 meters

long, bidirectional, with two lanes in each direction. The gray areas represent the

obstacles.

The vehicle movements are simulated using SUMO [51]. SUMO is an open

source road traffic simulation package designed for large road networks. We gen-

erated three traces for 400 vehicles using different random seeds. Figure 4.1 shows

a snapshot of one of the generated trace. The yellow points represent the vehicles.

We use CORNER[52] as the radio propagation model. CORNER is a channel

model for urban VANETs. It takes the street map as the input and generates path

loss using a function of the relative positions of two nodes. CORNER classifies

pairs of vehicles into three cases: line of sight (LOS), non line of sight with one

intersection along the path (NLOS1) and non line of sight with two intersections
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along the path (NLOS2). For each case, the path loss is calculated differently.

4.2.2 ICN Topology-Assisted Geo-Opportunistic forwarding

(ICN-TAGO)

Although with built-in chunk-level caching, VANET ICN still faces the challenges

incurred by the intermittent links and unstable capacity caused by obstacles and

mobility, which is well simulated by the CORNER model. Therefore, one criti-

cal aspect for the system is to construct a robust routing mechanism conquering

such environments. To handle the obstacles (buildings) in urban VANET. We

extend SSP (3.5.3) and propose ICN Topology-Assisted Geo-Opportunistic for-

warding (ICN-TAGO) with the road topology awareness. The idea is summarized

as follows.

1. The requester first retrieves the destination location (a geo-coordinates of

the target data holder) from the content location and discovery service. It

then stamps the interest packet with its own location, the destination loca-

tion, and then broadcast the packet. We will discuss the content discovery

methods in more details later in chapter 5. Since the purpose of this chapter

is to explore the ICN design space generally, we simply assume the location

is known with negligible overhead instead of selecting a particular content

discovery mechanism.

2. Upon receiving a request, a relay node first decides whether it is an eligible

forwarder by calculating the possible routes from the last hop to the des-

tination. Using the destination location, its own current location, and the

knowledge of the area map, a node can calculate a virtual route represented

by the intersections of the map by basic Dijkstra’s algorithm. A node judges

itself to be an eligible forwarder if it is on one of the virtual path between

last hop and the destination. Otherwise it drops the packet.
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3. Eligible forwarders then enter the contention phase. During contention, a

relay node sets a timer based on its computed virtual path to the destination

and the last hop location. The relay re-broadcasts the packet if the timer

expires before it hears a re-broadcast from an eligible forwarder who has

higher priority. Otherwise, it drops the packet.

4. The process repeats until the interest reaches a data holder or the recorded

destination location. Once the data holder receives the interest, it broadcasts

the data. Upon receiving a data, the relays cancel their timer and drop the

request packets. The data then follows the breadcrumb path back to the

requester.

The pseudocode of the contention timer algorithm is presented in algorithm 1.

The forwarders are prioritized as follows. Nodes calculate the target intersection

of the last hop based on the last hop location carried by the request and their own

target intersections. Note that the target intersection can be easily computed

using any shortest path algorithm with the road map defined as a set of links

between intersection locations, and the location of destination and a given node.

The map information making the topology awareness possible is commonly avail-

able in navigation system. In our implementation, we use Dijkstra’s algorithm to

compute the target intersection.

If a node is closer to the destination than the target intersection of the last

hop, it is in the group of high priority class. If it resides between the last hop and

the target intersection of the last hop, meaning it is on the same road segment as

the last hop’s, it is in the group of low priority class. In all other cases, it is an

ineligible forwarder. The high priority class nodes set their timer by

T = Thigh
d(locm, targetm)

TxRange
(4.1)
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Algorithm 1 ICN-TAGO Set Expiration Timer

1: procedure SetTimer(map, last, dest, req)

2: if I am requester then

3: timer ← 0, return timer

4: else if I am dataholder then

5: drop req and contend for data broadcast, return

6: else

7: eligible← false,updatedtarget← false

8: targetl ← NextIntersection(map, last, dest)

9: if I am between targetl and last then

10: eligible← true

11: else if I am on line-of-sight to targetl then

12: loc← my position, targetm ← NextIntersection(map, loc, dest)

13: if targetm is closer to dest than targetl then

14: eligible← true, updatedtarget← true

15: end if

16: end if

17: if eligible = true then

18: if updatedtarget = true then

19: timer ← equation(4.1)

20: else

21: timer ← equation(4.2)

22: end if

23: return timer

24: else

25: drop req, return

26: end if

27: end if

28: end procedure
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Algorithm 2 ICN-TAGO Cancelling Mechanism

1: procedure Cancel(map, last, dest, packet)

2: if packet is the corresponding data packet then

3: cancel transmission

4: return

5: else if packet is the request then

6: loc← my position

7: targetm ← NextIntersection(map, loc, dest)

8: targetl ← NextIntersection(map, last, dest)

9: if targetm 6= targetl then

10: cancel transmission

11: return

12: else if last is closer to targetm then

13: cancel transmission

14: return

15: end if

16: end if

17: return

18: end procedure
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Figure 4.2: On/Off User Behavior

where Thigh is the maximum expiration time for high priority class, locm is the

location of the eligible forwarder m, targetm is the target intersection of forwarder

m, and d(i, j) represents the distance between location i and j. Note that for high

priority class, targetm may be different from the target intersection of last hop,

and this new target is closer to the destination. By definition, it is possible that the

requests are propagated via multiple paths (towards multiple target intersections),

but the propagation is directional. This multi-path exploration helps reduce the

chance that the request encounters a ”hole”.

For low priority class, the target intersection is the same as the last hop’s, and

the expiration timer is set in a range of [Thigh, Tlow] by

T = Thigh + (Tlow − Thigh)
d(locm, targetm)

TxRange
(4.2)

where Tlow is the maximum expiration time for low priority class.

The timer cancelling mechanism in algorithm 2.

4.2.3 Web access user behavior model

The measured performance changes dramatically with different application traffic

in mobile ICN due to the fact that contents are cached on a dynamic path be-

tween mobile data holders and requesters. To obtain insights for a more realistic

application traffic, we simulate the user behavior based on the SURGE model [53].

Each requester issues requests new data objects following an On/Off model [54].
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The model is represented as a state machine in figure 4.2. The On state represents

the duration when an attempt to request a web page is made. Each web page is

associated with a batch of data objects. The batch size follows a Pareto distri-

bution. The data objects are retrieved one by one. When the batch transmission

is complete, no matter it is successful or not, the application goes to Off state.

This state represents the ”user thinking time” and is Pareto distributed. The On

state itself is another state machine including FileSend state and ActiveOff state.

These two states represent the time the requests for a particular data object are

being sent and the system processing time between requesting two data objects,

respectively. The ActiveOff time follows Weibull distribution. As AcitveOff time

is supposed to be much smaller than the inactive Off time, we cut off the Weibull

distribution tail so that the maximum ActiveOff time is 1 second. As suggested

by [53], we generate the data object size using the hybrid Lognormal/Pareto dis-

tribution with a 93% cutoff. The file popularity follows a Zipf-like distribution

[55] with α set to 0.8. The parameters of all distributions are summarized in table

4.1.

Component Model Probability Density Function Parameters

File size-body Lognormal p(x) = 1
xσ
√
2π
e−(lnx−µ)

2/2σ2
µ = 9.357;σ = 1.318

File size-tail Pareto p(x) = αkαx−(α+1) k = 133K;α = 1.1

Popularity Zipf

Temporal locality Lognormal p(x) = 1
xσ
√
2π
e−(lnx−µ)

2/2σ2
µ = 1.5;σ = 0.8

Request sizes Pareto p(x) = αkαx−(α+1) k = 1000;α = 1.0

Active OFF time Weibull bxb−1

ab
e−(x/a)

b
a = 1.46;b = 0.382

Inactive OFF time Pareto p(x) = αkαx−(α+1) k = 1;α = 1.5

Embedded objects Pareto p(x) = αkαx−(α+1) k = 1;α = 2.43

Table 4.1: Summary Statistics for models

To ensure the data object universe size is large enough for the simulation

43



duration, we generate the data object universe with the size

Usize = (Nv/Nneighbor)Tsim/Tretrieve (4.3)

where Nv represents the total number of vehicles, Tsim is the duration of active

simulation time, Tretrieve is the expected time for an average web page retrieval.

Nneighbor is the number of cars in one hop distance estimated by

Nneighbor =
TxRange

Wv +Dsafe

(4.4)

where TxRange is the maximum transmission range, Wv is the width of a vehicle,

and Dsafe is the safety distance between cars. A mid-size car has width about

4.8 meter, and the safety distance between two cars is 33 meters for 25 mph speed.

The maximum transmission range is 210 meters for 54Mbps data rate.

The average web page retrieval time is estimated by

Tretrieve =
NobjNfilesize

R
+ Toff (4.5)

where Nobj is the expected number of data objects in a batch, Nfilesize is the

expected size of a data object, R is the data rate, Toff is the expected inactive off

time. The numbers are obtained by the mean of the corresponding distributions.

In addition, we implement a sliding window-based flow control mechanism at

the receiver side, similar to that in TCP, to ensure consecutive chunk interests.

The sliding window size is a constant equivalent to the data chunk size.

4.2.4 Metrics

All metrics used in the experiments are listed as follows.

• Completion ratio: the fraction of data chunks successfully received by the

data consumer out of all requested chunks.
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• File retrieval ratio: the fraction of data objects (files) successfully received

by the data consumer out of all initiated data object retrieval.

• Response time: the time interval from the moment a data consumer first

sends an interest to the point when the data consumer receives the first

corresponding data chunk.

• Cache hits: the number of times when a relay finds the corresponding data

chunk in its cache.

• Goodput (Bps): the total data objects successfully received on the requester

side in bytes each second.

• Aggregate traffic: the total number of bytes sent by the network over the

entire simulation time.

4.3 Simulation results

4.3.1 Design options

We first compare the six combinations of design options: NR+ALL, SR+ALL,

NR+P2P, SR+P2P, NR+NONE, and SR+NONE. While keeping the total num-

ber of nodes 400, we vary the number of requesters in this experiment between

10, 100, and 400, to explore how each option is affected by busier networks.

The results of completion ratio is shown in Figure 4.3. Comparing the three

caching options, we find that the completion ratio of pervasive caching (ALL)

improves from no caching’s 50-55% and peer-only caching’s 53-57% to 78-88%.

This shows that pervasive caching is useful in the ad-hoc environment as the

mobility is high. Interestingly, pervasive caching achieves 33% improvement on

completion ratio over peer-only caching. Note that in peer-only caching, only

peers requesting the same data objects will cache that particular data object, and
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Figure 4.3: Design options: completion ratio

hence the number of data objects cached at each node is less than that in pervasive

caching, even if the number of requesters is the same as the total number of nodes.

This is a significant difference between the ad-hoc network and the Internet [49].

This result shows that pervasive caching is helpful in an ad-hoc network, even if

the topology is not disruptive. Note that the difference in file retrieval ratio is

even more significant (Figure 4.4, as the user will abort the entire data object

transmission when a chunk of the object is not received after 4 requester-side

reinitiation. We conclude that pervasive caching is critical to the performance in

an urban VANET.

The response time result is shown in Figure 4.5. Surprisingly, examining the

results for nearest-cache routing and source-only routing with the same caching

paradigm, the response time of two routing options are similar. This means that

nearest cache routing achieves only limited improvement even when the mobility

is high, and suggests that it is reasonable to eliminate cache location monitoring
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Figure 4.4: Design options: file retrieval ratio

to reduce overhead. The reason of this result is that no matter which caching

mechanism is used, when a path is chosen, the content can only be cached on the

path. As the movements of the vehicles must follow the road map, if the cache is

reachable, it is likely that both nearest-replica routing and source-only routing can

reach a data holder in similar distance when the interests from different requesters

come in at different times.

We also observe that in Figure 4.5, the response time of pervasive caching is

lower when the network load is moderate when number of requester is 10 or 100,

as expected. However, when the number of requesters increase to equivalent to

the total number of nodes, pervasive caching may cost higher response time. This

is because pervasive caching incurs more redundant data transmissions despite

the controlled data storm. The data collision is still likely to happen due to

hidden-terminal and thus retransmissions may be frequent. However, considering

the significant improvements in completion ratio and file retrieval ratio, one can
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Figure 4.5: Design options: response time

judge that pervasive caching increases the data availability significantly and is a

must in highly mobile ad-hoc network.

4.3.2 The effects of cache size

While pervasive caching brings significant performance improvements, the exces-

sive storage overhead may be costly. Therefore, it is important to understand the

tradeoff between cache size and performance. We performed a test varying cache

size with 100 requesters. In this set of experiment, we use pervasive caching and

source-only routing, and apply random cache replacement policy as it has been

confirmed to achieve as good data availability as more sophisticated policies with

pervasive caching [56].

As shown in figure 4.6, the completion ratio reaches the ceiling of 85% soon

and remains flat after 6000KB. Looking at the response time trend in figure 4.7,
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Figure 4.6: Cache size test: completion ratio

a sweet spot 6000KB is sufficient for this scenario. The reason why only a small

cache size is required is that the pervasive caching contributes the most to compen-

sating lossy wireless channels. While caching also improves the data availability

for the subsequent Interests sent by other requesters, Interests from different re-

questers spread over longer time and hence the performance gain is not significant

as the performance is more sensitive to mobility than to cache size under random

replacement policy. Therefore, a small cache that can accommodate the aggre-

gate data traffic on the path at any time is sufficient to achieve the majority of

performance gain.

The above is confirmed when looking at the cache hits in Figure 4.8. The cache

hits is flat once the cache size is large enough, showing that the cache utilization

does not increase with the cache size. Moreover, the aggregate traffic results in

Figure 4.9 show that the larger cache size only reduces the traffic slightly and thus

it is sufficient to use a small cache at every node.
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Figure 4.7: Cache size test: response time

Figure 4.8: Cache size test: cache hits
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Figure 4.9: Cache size test: aggregate traffic

4.3.3 Performance gain with varying data object popularity

We further explore the performance with different data object popularity distri-

bution. We vary the zipf distribution parameter from 0.2 to 1.0. As shown in

Figure 4.10, the number of cache hits increase as the zipf parameter increases,

that is, as users are more likely to request the same files. This is as expected since

the more Interests are for the same files, the higher the cache utilization is. This

also leads to higher completion ratio (Figure 4.11 and file retrieval ratio (Figure

4.12), since it is more likely for the users to obtain the popular data chunks from

caches when the popularity distribution is more concentrated.

On the other hand, we observe an increasing trend of response time with zipf

parameter larger than 0.8. This is due to the increasing congestion caused by

cache storm due to more widely-spread popular files. However, the increment is

slight and does not affect the overall performance significantly. We confirmed in

Figure 4.14 that from the user’s point of view, the goodput still poses an increasing
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Figure 4.10: Zipf parameter test: cache hits

Figure 4.11: Zipf parameter test: completion ratio
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Figure 4.12: Zipf parameter test: file retrieval ratio

trend with the more concentrated file request distribution.
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Figure 4.13: Zipf parameter test: response time

Figure 4.14: Zipf parameter test: goodput
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CHAPTER 5

Context-Aware Content Discovery

5.1 ICN Content Discovery

Content discovery in ICN differs from IP network in the sense that there may

be multiple locations of the same data object or chunk, and the number of data

objects to locate is much larger than that in IP network, as in IP network the

discovery design focuses on tracking only the hosts. Therefore, content discovery

is an important playground for future ICN VANET research. The state-of-art

ICN content discovery assumes data will be searched by flooding [19]. However,

as the number of contents grows, this approach may lead to high overhead and

congestion. In this chapter, we propose a context-aware content discovery to

eliminate such overhead.

The ICN content discovery problem can be reduced to the routing problem

of the first interest of a data object with unknown location. Therefore, it is in

fact part of the name-based interest routing and relates most to the node dis-

covery phase of the IP-based routing. We discuss below three content discovery

paradigms for VANET inspired by reactive routing, proactive routing, and oppor-

tunistic forwarding.

5.1.1 Reactive content discovery

Reactive content discovery is accomplished via flooding. The first interest of a

data object is flooded if the location of the data object is unknown. Once the data
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is found it is forwarded in reverse on the path(s) from which the interest arrived

(breadcrumb routing), and the location of this data object will be recorded. The

potential issue of reactive content discovery is that the frequent flooding and re-

flooding to search new data sources may cause network congestion and nullify the

caching benefits.

5.1.2 Proactive content discovery

Proactive content discovery is based on data object advertising. Flooding is not

required since the object locations are pre-announced, and thus the flooding traffic

may be eliminated and the searching delay is small. This way, the foreground

search overhead is much lighter than that in reactive routing. On the negative

side, there may be significant background advertising overhead. An ICN would

require storing location information of at least 1012 data objects [57]; maintaining

location information for all content names means significant cost in vehicular

network. If names are hierarchical, as postulated in [?], one can perform prefix

routing (as currently done in the Internet for DNS Domain Names and for IP

addresses) rendering the problem more manageable. However, only a selected set

of prefixes can be advertised.

5.1.3 Opportunistic content discovery

The two previous approaches require an active (i.e., reactive or proactive) content

discovery phase. To avoid the associated overhead, an approach called oppor-

tunistic forwarding, or carry-and-forward scheme, has also been pursued. Re-

quests and advertisements are not flooded or propagated proactive to the entire

network. Rather, they are disseminated hop by hop through “opportunistic” node

encounters. This scheme allows total control on propagation overhead. The oppor-

tunistic scheme significantly reduces the request flood and location announcement
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overhead. However, it may also introduces significant latency and was originally

developed strictly for delay tolerant applications.

5.2 Context-Aware Content Discovery

Our simulation results in 4.3 show that while pervasive caching is critical in urban

VANET, nearest-replica routing does not significantly improve the performance.

This leads us to the conclusion that the overhead of maintaining locations of all

content holders is not necessary. For proactive content discovery, it is reasonable

to only keep track of the location of the data sources. Therefore, we suggest

only the data sources advertise their application prefix proactively. This way,

the benefits of proactive content discovery is maximized while the overhead is

minimal. However, as the number of applications may still increase, it is not

appropriate to assume all application prefixes can be advertised. Therefore, we

propose a hybrid content discovery framework for VANET ICN applications to

improve the scalability.

We expect the ICN applications will be categorized by their popularity. Pop-

ular data services are generally accessible by most users at least in a local geo-

graphic scope and the target services are considered location-based, and thus one

can assume that such a service has a well-known service name prefix. Emergent

announcements and map services are examples of this category. Depending on

the number of applications available in the network, the application prefixes ad-

vertised are limited to the most popular k registered applications in an area. In

this case, the volume of advertisement traffic can be controlled. We propose a

proactive content discovery method, Hierarchical Bloom Filter Routing (HBFR),

in section 5.3. The other applications must be accessed by reactive content discov-

ery, that is, by flooding. However, the flooding range must be limited to prevent

excessive bandwidth consumption. We propose a hybrid reactive and opportunis-
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tic content discovery method, Last-Encounter Content Routing (LER) in section

5.4, for the searching of less popular application data.

Note that although based on the results in 4.3, it is unnecessary to keep track

of cached copies since nearest-replica routing performs similar to data origin-

only routing in urban scenario. However, a service may be provided by multiple

provider nodes. Therefore, the multi-source nature of ICN still needs to be con-

sidered in the content discovery design.

5.3 Proactive Content Discovery: Hierarchical Bloom-Filter

Routing (HBFR)

5.3.1 Bloom Filters

We speculate that popular content will be offered by a few fixed or mobile providers

and the popularity of these data services follows Zipf’s distribution as the web

traffic does [58][55]. With these premises, it is reasonable to use Bloom-filters [59]

as a content digest to announce only the popular data service prefixes.

Bloom-filter (BF), which is widely used in applications such as Internet caching

and P2P content discovery [59][60][61], is a probabilistic data structure that is used

to test whether an element is a member of a set. A BF is an m-bit array. To add

an element to a BF, the element is fed to k hash functions which map to k array

positions and these k bits are set to 1. The existence of an element can be queried

by examining the k positions of the array. BFs can be easily integrated/merged

by a bitwise OR operation. False positives are possible for BF queries, while false

negatives are not. Suppose the number of elements added is n, the false positive

probability of a BF is given as

(1− e−(
kn
m

))k (5.1)

In our case, the elements are the prefixes of data services. Due to the multi-path
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nature of ICN, a false positive may cause extra transmissions in data discovery, but

this excessive overhead can be negligible as it is proportional to the false positive

rate of the employed BF hash algorithms. Assuming n = 100 data services exist in

the area, the false positive probability is about 0.86% with an 1Kbit BF array using

5 hash functions. Smaller overhead and better scalability can be achieved with

more advanced BF designs [62][63]. In our implementation, we use the original

BF algorithm proposed in [47] and 5 hash functions elf32, SDBM, DJB, DEK,

and BP to demonstrate the lower bound of the potential performance.

5.3.2 HBFR Overview

Figure 5.1: Simple partitioning example

In HBFR, the urban map is hierarchically organized into geographical par-
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titions and the vehicles are likewise partitioned in corresponding clusters. All

vehicles are equipped with GPS and thus they are time-synchronized and know

which partition they are in. In Figure 5.1, a three-level rectangular partitioning

that fits a Manhattan grid topology is shown. We denote the partition j of level

i as {i, j}. The vehicle in Figure 5.1, according to its GPS coordinates, decides

that its corresponding partitions are {1, 15}, {2, 3}, and {3, 0}. In practice, leaf

partitions can be designed to correspond to road segments. Segments joined by

road intersections form the next level partitions. Each vehicle reads the number

of levels and the cluster maps when it enters the local VANET.

BFs are used to advertise the presence of private data services’ prefix. Each

node maintains a node BF summarizing its local content; the node BFs are then

used to construct the partition BFs, which are the content digests of the corre-

sponding areas. Each node stores (1) node BFs originated from all nodes in the

same leaf partitions with it and (2) the partition BFs of its own partition and the

sibling partitions at every level. In other words, node BFs are disseminated to all

nodes in the same leaf partition, and the level i partition BFs are disseminated

to all nodes in the same level i+1 partition. In Figure 5.1, partition BF{1, 15} is

disseminated to all nodes in {2, 3}.

The content search mimics a DNS query that is refined level by level. We

illustrate the procedure by example. Since the vehicle shown in Figure 5.1 is in

partition {1, 15}, it has the node BFs from nodes in partition {1, 15}, and partition

BFs BF{3, 0}, BF{2, 0}, BF{2, 1}, BF{2, 2},BF{2, 3}, BF{1, 10}, BF{1, 11},

BF{1, 14}, and BF{1, 15}. Suppose it receives an interest for content that hap-

pens to be in {1, 0}, the vehicle starts from examining node BFs it holds and

then level 1 BFs. Since it does not find any match at the leaf level, it checks the

higher level filters and finds a match in BF{2, 0}. It forwards the query to parti-

tion {2, 0} using modified SSP. At this point, the interest carries the destination

partition ID {2, 0} and targets the anchor coordinates, which is defined as the
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center of the partition in our implementation, of partition {2, 0}. Each eligible

forwarders, while receiving this interest, examines their lower-level BFs with the

content prefix. The destination partition may be replaced by a lower level par-

tition at any time if the eligible forwarders find a BF match in their database.

In the worst case, once the interest is propagated to nodes in partition {2, 0},

the nodes find a match in BF{1, 0} and then updates the interest destination to

{1, 0}. The procedure repeats hereafter and the nodes in {1, 0} finds a node BF

that matches and redirect the request to the producer node. Data follows the

breadcrumb of the request back to the data consumer and carries the producer

location, which will be used as the destination of the following requests directly.

Meanwhile, all relays in between cache the producer location and this information

is used to assist other content search requests.

5.3.3 Advertisement Packet Generation

We assume the service providers can judge if the content they provide is popular.

The popularity of services is decided based on prior knowledge and the statistics

collected. If the provider determines that the application prefix is unpopular

based on number and diversity of request it received, it stops advertising it in the

BF.

All nodes periodically summarize their content to create their own node BFs.

Only the data service providers should include the prefixes in their node BFs. At

the time when a node generates its node BF, it also creates a local-view partition

BF for each of its ancestor partitions by merging all BFs of this ancestor partition’s

children partitions/nodes. The node then may send out its node BF and partition

BF advertisement if appropriate. In order to reduce the control traffic, a node

only populates/forwards a BF if it is ”fresher” than the partition BFs that have

been circulated in the area.
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Figure 5.2: Node advertisement packet format

Figure 5.3: Partition advertisement packet format

The packet formats of BF advertisement packets are shown in Figure 5.2 and

5.3. The freshness of a BF is indicated by the freshness index carried in the

packet. For node BFs, the freshness index is its creation time at the originator (in

a loose granularity, say in second). The larger the freshness index is, the newer

the information in the BF is. For partition BFs, the freshness index of BF{i, j},

Fi,j, is calculated by the following heuristic:

Fi,j = max
∀k,P ({i−1,k})

dFi−1,k
Gi

e (5.2)

where P (x) represents the parent partition of partition x. Note that Fi−1,k rep-

resents the freshness index of the lower level BF BF{i− 1, k}. A ceiling is taken

as we wish to define a looser granularity of the freshness index (time) for higher

level. For example, while the node BFs may record a creation time in seconds,

the partition BF may map its freshness index in the unit of 5 seconds at level 2

(Gi = 5). In this case, node BF freshness index 0, 1, 2, 3, 4 all map to the partition

BF freshness index 0. Equation 5.2 states that the freshness index of a partition
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BF is the creation time of its freshest children partition/node BF. In other words,

the freshness of a partition BF is approximated by the freshness of the newest BF

among all lower-level BF aggregated. Note that if a node receives advertisements

of the same nodes from different paths, the staler or equivalently fresh advertise-

ment, i.e. with smaller or equivalent freshness index, than the one recorded locally

at the receiving node are discarded to reduce redundant processing and control

traffic.

To balance the tradeoff between overhead and accuracy, the BF initiation

frequency is set proportional to the degree of change of current BF advertisements.

The degree of change is defined as the number of bits newly set/removed compared

to the previously generated BFs. All BFs have a pre-defined lifetime, which is two

times of their announcement frequencies. Expired BFs are excluded from both

the partition BF aggregation and the content search.

Note that different from the previous approach [64], there is no cluster head

in each partition to supervise the BF aggregation. The aggregation is entirely

distributed. The major advantage of the distributed BF aggregation is robustness

to mobility. In a highly mobile network the cluster head may be short lived and

must be reelected when it drifts out of its region. Moreover, in an intermittent

VANET, the cluster head may become isolated from other nodes thus jeopardizing

the proper transmission of BFs to upper layers. HBFR is robust to node isolation

and intermittent connectivity, since it percolates content information via BFs in

parallel among all nodes.

5.3.4 BF Propagation: local-view vs. global-view BFs

The BFs must be periodically refreshed to account for content withdrawals due

to mobility across cluster boundaries. In order to keep the BFs at each node

synchronized with low control traffic overhead, while a node must maintain a local-
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view partition BF by aggregating lower-level BFs it currently has, it also keeps a

global-view version of partition BFs. The global-view partition BF represents the

freshest partition BF that is being circulated, and may differ from the local-view

partition BF.

While node BFs are disseminated to all nodes in the same leaf partition of

the BF originator by simple restricted flooding without further processing, the

global-view partition BFs are maintained in a distributed manner. As all nodes

create their own local-view partition BFs for its corresponding partitions, nodes

only propagate global-view partition BFs. When a local-view partition BF is

created, the node compares the freshness index of the local-view partition BF

with that of the current global-view partition BF. If the local-view partition BF is

fresher, it replaces the global-view partition BF and broadcasts the advertisement;

otherwise, the local-view partition BF is kept on file but not propagated. When

receiving new partition BF advertisements from other nodes, the same principle

holds. A node only forwards a received global-view partition BF if both of the

following conditions are satisfied:

1. The BF is a content digest of its own partition or sibling partitions.

2. The received copy has a larger freshness index than that of its local global-

view partition BF copy of the particular partition.

Note that the nodes also receive and forward the global-view BFs of the sibling

partitions (following the same principle of freshness), but do not maintain local-

view BFs of them. In this way, the global-view partition BFs are maintained

in a distributed but synchronized manner, and the advertisement overhead is

significantly reduced.

During the content searching phase, both local-view and global-view partition

BFs are used to compensate the potential information loss of the freshness heuris-

tic in case of packet losses. In addition, nodes utilize all valid BFs they have

64



received to best utilize the caching ability. Since all packets are broadcast, if a

node overhears the advertisement of a remote partition, the advertisements are

kept in its storage and may be used for local content search.

5.3.5 Modified SSP Forwarding

In the original SSP described in 3.5.3, the rebroadcast is prioritized purely based

on the eligible forwarder’s distance to destination. In HBFR, nodes that have

more updated destination information (i.e. the nodes found a match in BF of

level lower than that of the current destination recorded in the packet) must be

given chances to transmit a packet. Therefore, we define nodes satisfying one of

the following conditions as eligible forwarders:

• Relays who have lower level destination information.

• Relays who are closer to the destination carried in the packet than the last

hop is.

Once the eligibility of forwarding is decided, an eligible forwarder sets its re-

broadcast timer based on the prioritization function. The other vehicles are ineli-

gible and automatically drop the received packets. Nodes that have a destination

location update are given highest priority and will set their expiration timer ran-

domly within [0, Tupdate]. The remaining eligible forwarders are prioritized by their

normalized distance to the destination; thus, their rebroadcast timer is calculated

as follows:

T = Tupdate + (Tdist − Tupdate)
dref
dmax

(5.3)

5.3.6 Scalability Analysis

The HBFR approach includes three sources of potentially non scalable overhead:

BF size storage overhead; BF dissemination overhead and query search overhead.
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We contain the BF size storage overhead by limiting the entries to popular

content prefixes. With the hierarchical naming design, the number of advertised

content prefixes is limited in a geographical area. Note that many data service

originators may share the same prefixes (e.g. Internet gateway service), and with

the popularity constraint the number of advertised prefixes does not grow with

the density of nodes.

The BF dissemination overhead is well-controlled by the freshness index heuris-

tic. Although fresher global-view partition BFs may be created from time to time,

the definition of freshness index limits the number of global-view partition BFs

being populated. This, of course, comes with the price of large query search

overhead, as the global-view partition BFs may not contain all information if the

originator missed some of the lower level BFs. However, this issue is compensated

by the fact that all nodes in the same partition keep their local-view partition

BFs. In this case, as long as there are some nodes that hold an accurate local-

view partition BFs exist near the anchor coordinates of the upper level partition,

the packet can be redirected to the correct lower level partitions.

Query search (interest routing) overhead is proportional to
√
N if the content

is uniformly distributed over the urban grid. In most practical cases in VANET,

the content is location relevant (e.g, traffic jam information) and thus the query

is satisfied in the local partition, reducing request routing overhead to log(N),

where N is the name space size. HBFR offers the advantage of aggregation, with

the drawback of false positives. However, the query search overhead due to the

false positives is negligible with proper popularity constraint.
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5.3.7 Simulation

5.3.7.1 Simulation Settings

We conduct a simulation using Qualnet 6.1. The simulation time is 600 seconds.

All experiments are repeated 20 times for all scenarios using different random

seeds.

We use a 2km2 Washington DC map from Tiger/Line file [50]. The vehicle

movement traces in our simulation consist of 50 vehicles in a 2km2 area generated

by SUMO [51]. For a comprehensive evaluation, we present the results of scenarios

generated by three different random seeds (referred as scenario 1, 2, and 3 later

on) with the same setting. To understand the effect of data caching, we consider

situations where requesters retrieve the same and different data objects. We test

two different types of popular data services: popular public data service and

popular private data service. We assume popular private data service provides

customized data for each requester, while the popular public data service provides

data objects of all requesters’ interests. The popular public data service scenario

includes ten randomly assigned data consumers downloading the same 900MB file

from one mobile data producer. The request sending rate is 1 per second for each

consumer. All downloads start at the same time at 7 second after the BFs are

stabilized. The popular private data service settings are the same as that of the

popular public data services except ten data consumers request ten different files

representing encrypted private data from the data producer.

We use IEEE 802.11a PHY and MAC, with data rates 24Mbps (transmis-

sion range 200 meters) and 6Mbps (transmission range 400 meters). Intermediate

nodes are allowed to retransmit forwarded requests for up to two times. Data con-

sumers may reinitate the request for up to four times. The retransmission interval

is 100ms and 500ms for intermediate nodes and data consumers, respectively. For

HBFR, the Bloomfilter size used in the simulation are 72 bytes. A two-level square
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partitioning similar to that in Figure 5.1 is used. The leaf partition size is 1000m2.

We compare HBFR with a baseline SSP which assumes zero content discovery

cost and a reactive content discovery realized by SF. In addition to compare

different content discovery mechanisms, we present the results for each routing

mechanism with and without caching (denoted by noC) to analyze the effects of

caching.

We measure (1) the response time, which is defined as the interval from each

request sent to its corresponding data chunk received, and (2) the completion

rate, which is defined as the ratio of the number of corresponding data received

at the receiver side over the number of requests sent. We also measure request,

data, and control traffic rates of the network, which includes the request, data,

and control traffic forwarded by all nodes. Confidence intervals (CI) are reported.

5.3.7.2 Evaluation

Figure 5.4: Completion rate: public data services (transmission range 200 meters)
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Figure 5.5: Completion rate: private data services (transmission range 200 meters)

The completion rates vary significantly with the data rate used. When the

transmission range is 400 meters, the network is always connected. We observe

nearly 100% completion rates for all approaches, with or without caching. Due

to the limited space, the completion rate of 400m range is omitted. Figure 5.4

and Figure 5.5 show the completion rates results of popular public and popu-

lar private data services for transmission range 200 meters, respectively. With

200 meters transmission range, the network is intermittent and thus we observe

lower completion rates for all schemes. We find SSP always achieves the highest

completion rates as it has perfect knowledge of content locations at all times. In-

terestingly, even with the advertisement overhead and potential inaccuracy, HBFR

still achieves higher completion rates compared to SF. The reason is that while

overhead has been largely reduced, SF experiences more collisions due to hid-

den terminals created by multi-path forwarding in the all-broadcast system. The

situation gets worse when caching is disabled. The completion rates are similar

among different type of services with the help of intermediate node retransmission.
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Therefore, we next investigate the performance in terms of overhead and latency.

Figure 5.6: Traffic: public data services (transmission range 400 meters)

Figure 5.7: Traffic: public data services (transmission range 200 meters)

Figure 5.6 and 5.7 presents the composite traffic of popular public data ser-

vices. Despite the request routing approaches, caching significantly reduces the

traffic load for public data. Comparing HBFR and SF, when the network is al-

ways connected with 400 meters transmission range (Figure 5.6), HBFR creates
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less traffic even considering the BF advertisement overhead, and the volume of

data traffic is reduced by more than 60%. The volume of data and request traffic

transmitted by HBFR and SSP are comparable, showing the HBFR content dis-

covery is nearly as efficient as the oracle content discovery of SSP. Note that the

HBFR content advertisement overhead is constant in a stable network. Hence,

if the popularity increases, i.e., the number of consumers increase, we expect the

traffic saving of HBFR over SF will be more significant in a connected network.

In Figure 5.7, we observe that SF induces less traffic in intermittent network than

HBFR does as both the request and data tend to traverse multiple paths with

HBFR under intermittency.

Figure 5.8: Traffic: private data services (transmission range 400 meters)

Figure 5.8 and 5.9 present the composite traffic of popular private data services.

For both popular public data service (Figure 5.8) and popular private data service

(Figure 5.9), SF induces very high volume of traffic. HBFR reduces the traffic by

up to 85% in connected scenarios.

Figure 5.10 and 5.11 show the response time of public data services. Interest-

ingly, in Figure 5.10, we observe that the response time of SF with caching is the
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Figure 5.9: Traffic: private data services (transmission range 200 meters)

Figure 5.10: Response time: public data services (transmission range 400 meters)
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Figure 5.11: Response time: public data services (transmission range 200 meters)

Figure 5.12: Response time: private data services (transmission range 400 meters)
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Figure 5.13: Response time: private data services (transmission range 200 meters)

largest due to the contention of multiple caches and hidden terminals. Several

retries are required for SF consumers to receive data. In case that the transmis-

sion range is limited to 200 meters (Figure 5.11), the improvement of HBFR over

SF is reduced. In both cases, the response time of HBFR and SSP are compa-

rably low. Note that HBFR traverses longer paths than SSP does since HBFR

requests may be sent via the geographical hierarchy, and hence we expect HBFR

has slightly higher response time. Figure 5.12 and 5.13 shows that HBFR remains

advantageous compared to SF and achieves comparable performance as SSP does

for popular private data services.
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5.4 Reactive Content Discovery: Scalable Opportunistic

VANET Content Routing With Encounter Informa-

tion

5.4.1 Protocol Design

For the applications not popular enough to be maintained using HBFR, we pro-

pose Last Encounter Content Routing (LER). LER is a hybrid reactive and op-

portunistic approach. We enhance the flooding-based reactive interest routing by

integrating the last encounter information concept [65][66], which helps vehicles

gather the location of content providers. In LER, the interest flooding is restricted

to k hops to prevent excessive overhead. In the mean time, LER opportunistically

keeps track of content locations using last encounter information obtained by one-

hop beacons. Each node maintains a database of last-known content locations.

The locations are updated only when encountering the data source. Note that

the information is not guaranteed to be accurate, but it is likely the interest will

reach the content holder.

LER has two phases. In the first phase, the location of the content is unknown.

Thus, the naive requester floods the Interest to search for the content location.

The second phase starts once the Interest reaches a relay that has the location

information of the particular content name requested. At this point, the routing

module stamps the destination location in the Interest and afterwards the Interest

routing switches from flooding to geo-routing. During the geo-routing process, the

relay nodes keep updating the destination location if they have newer information.

We use the following example to further explain the idea. Suppose a vehicle

A wants to retrieve a file f from an application app. While A does not know who

holds the content, vehicle B is the data source of application app. Each vehicle

maintains two data structures: content list and Last Encounter List (LEL). The
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content list, which is periodically advertised to one-hop neighbors, summarizes all

the contents the node itself has. When vehicles receive their neighbors’ content

lists, they merge the information carried within the lists into their LELs. Each

entry of the LEL includes the content name, the provider ID, the encounter lo-

cation, and the encounter time. Note that (as a difference from [65]) one content

service can be provided by multiple vehicles, so there can be multiple entries for

the same content name, each of which represents a different vehicle.

Application

Prefix

Vehicle ID Location Time

app B (x,y) 12:00pm

Table 5.1: The format of Last Encounter List (LEL)

Suppose B previously broadcasted its content list to its nearby vehicle C at

12:00 pm at location (x, y). The LEL of C is shown in Table 5.1. That is,

vehicle C can provide an approximate destination location for application app.

Suppose now vehicle A broadcasts its Interest app/f . The Interest is received by

all nearby vehicles, C and D. C and D then search their LELs for app/f using prefix

matching. As vehicle D cannot find any entry matching this name, it prepares to

broadcast this Interest to its neighbors to continue the search. However, C has

found the match. It adds the destination location geo-coordinates, destination

nodeID, and encounter time to the Interest packet, and send the Interest packet

out by opportunistic geo-routing, as discussed in the next section. Upon receiving

Cs Interest, D realizes the Interest is delivered by geo-routing and carries content

provider information. It thus aborts the rebroadcast.

If there are multiple providers for one content, there can be many strategies

to choose the vehicle to serve the Interest. In our implementation, we randomly

choose one vehicle to serve the Interest for the purpose of diversity and load
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balance.

5.4.2 LER timer-based forwarding

Our LER also uses the timer-based forwarding. As in HBFR, nodes that have

more recent location information than the one carried in the packet set their

expiration timer randomly within [0, Tupdate]. Since the highest priority is always

given to forwarders who have relatively recent location information, the random

timer for other nodes is set to be larger than Tupdate.

In phase 1 (the flooding-based content search phase), the interest propagation

relies on a modified SF algorithm in which the waiting time of a node is

Tf = Tupdate + (Tdist − Tupdate
(Dmax −min(Dmax, Dtransmitter))

Dmax

(5.4)

Phase 2 (the geo-routing phase) is triggered when a provider’s geographic

location is found. The geo-routing is done by modified SSP, in which the waiting

time is set by equation 5.3. In addition, the rebroadcast is only cancelled if a node

does not have newer location update for the interest.

5.4.3 Simulation

5.4.3.1 Parameter exploration

We first study the relationship between LEL exchange frequency and the efficiency

of content search. The simulation parameters are as follows:

• MAC and PHY parameters: We use the 802.11 Adhoc WIFI module defined

in ns-3. The wireless transmission range is set to be 150 meters. The

maximum expiration time Tdist is 0.1 second. We use CORNER propagation

model [52] to simulate signal loss in urban environments.
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• Urban environment and mobility model: The urban map we uses comes from

TIGER/Line files [50] collected by Census Bureau. We generated a 120s

mobility trace using SUMO [51] to simulate practical vehicle movements.

• Application: For each trial, we randomly choose one vehicle as content con-

sumer and one vehicle as content provider. The producer publishes its

service name prefix /prefix to its neighbors using LEL application. The

consumer requests contents named /prefix/seq every 1 second, in which seq

starts from 0 and increases by 1 each time. That is, the consumer sends

Interests named /prefix/1, /prefix/2, , etc. All requests are served by the

provider based on longest prefix matching.

We set LEL exchange period T to be 1s, 5s and 10s, and examine (1) the

number of flooding hops before switching to geo-routing and (2) the total number

of hops an Interest traverses.

Figure 5.14: LEL exchange frequency vs. hops in phase 1
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In Figure 5.14, we can clearly see that when LEL exchange frequency increases,

the number of Interest flooding hops during search phase decreases significantly:

when T = 10s, 63% of Interests can find the provider within just one hop. When

T = 1s, the probability of locating provider in one hop increases to 92%. This

is because the more frequent vehicles exchange LEL with each other, the more

information each vehicle collects, and therefore the more likely a provider can be

located. Note that the results above are normalized over the number of interests

reached the data holder.

5.4.3.2 Performance comparison

We then evaluate the performance of LER by comparing it with SF, SSP, and

GHT. GHT [67] is a well-known content storage method designed for mesh net-

works. The main idea of GHT is to hash a certain key k into geographic coor-

dinates. In our implementation, the key k refers to a unique application prefix.

Therefore, the prefix is hased to a geo-coordinates (x,y). Only those nodes whose

distance to (x,y) is within d meters have to keep the location of the provider,

where d is a small range (d = 100 in our experiment). The content provider ad-

vertises its application prefix list and location to the hashed geo-coordinates every

T seconds.

This set of experiment is conducted using Qualnet 6.1. We use a 2km2 Wash-

ington DC map from Tiger/Line file [50]. The vehicle movement traces in our

simulation consist of 50 vehicles in a 2km2 area generated by SUMO [51]. The

data rate is 6Mbps. We simulate 10 randomly selected data consumers down-

loading 900MB files from 10 different applications on one provider node. T is 1

second. The simulation continues for 600 seconds and all experiments are repeated

10 times with different seeds.

The completion ratio results are shown in Figure 5.15. LER, SF, and SSP
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Figure 5.15: LER simulation results: completion ratio

all achieve 100% completion ratio in this experiment as an end-to-end path can

be easily found. GHT has a completion ratio 8% lower, since nodes around the

hashed locations may move away. In such case, the content providers cannot be

located and the Interest will be dropped.

Figure 5.16: LER simulation results: response time

The response time results are presented in Figure 5.16. As expected, LER
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reduces the response time of SF’s as it traverses a single path instead of flooding

the Interests. On the other hand, the response time is only slightly higher than

SSP’s, meaning it only traverses a few hops more than SSP does. We also observed

GHT has longer response time due to the effects of mobility. Interests must be

retransmitted when the packets are dropped due to unavailable location servers.

Figure 5.17: LER simulation results: composite traffic

Finally, the composite traffic is shown in Figure 5.17. We observe that LER

reduces the SF traffic by about 60%. In addition, its advertisement overhead is

minimum for this scenario. GHT’s traffic is higher than SSP as it does not tra-

verse the shortest path. However, LER achieves a good balance between the high

completion ratio of flooding-based reactive content discovery and small control

overhead and short response time of proactive content discovery.
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CHAPTER 6

Disruption-Tolerant ICAN

In this chapter, we first describe in more details the DT-ICAN design for sparse

VANET ICN. Later, we study the applicability of network coding in DT-ICAN

to improve the file retrieval efficiency in extremely sparse networks.

6.1 DT-ICAN In Depth

6.1.1 Data retrieval in DT-ICAN

In DT-ICAN, data propagation is triggered by DTN-request instead of per-chunk

pull-interest to prevent excessive usage of bandwidth. There are two major proce-

dures in this process to control the bandwidth consumption: request generation,

data object prioritization, and randomized chunk transmission. The receiving

node uses request generation to control the amount of data transmission trig-

gered; the sending node uses data prioritization to decide the order of data object

transmission in the limited contact duration and randomized chunk transmission

to reduce redundant transmissions from different forwarders.

6.1.1.1 Request generation

Since node-interest and DTN-request are both represented by Bloomfilters, the

most efficient way to generate a DTN-request is by merging a node’s own node-

interest and the ones received from neighbors. This leads to a node priority-based

request generation policy. Namely, the data to include in the request is decided
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by a node ranking locally computed. The node ranking policy can be flexibly

defined. In our implementation, we assume all nodes have the same ranking for

simplicity.

6.1.1.2 Data prioritization

When a node receives a request, it finds the requested data objects/chunks avail-

able in its content store. This procedure is called request matching. A list of

available data chunks are compiled, and the node may order the data objects

according to node priority and content attributes. Note that this is where the

application/content awareness can help improve performance. In our simulation,

data objects are prioritized in First-Come, First-Serve order.

6.1.1.3 Randomized chunk transmission

When a data transmission is triggered by the request, the available data chunks

are sent to the receiving node in random order. The reason of the randomization

is to improve the cached chunk diversity of the opportunistic network in case of

short encounter durations. An alternative approach is to utilize network coding,

which can further improve the performance under high intermittency and will

be explored later. A handshake procedure is associated with each data chunk

transmission to eliminate redundant transmission in the broadcast network. For

each data chunk, the sending node first sends a Request-To-Send-Block (RTSB)

carrying the chunk name to the target node. Upon receiving an RTSB, the target

node sends a RTSB-Reply, which may accept or reject the block. If the block

is rejected, a reject code is carried to indicate one of the three reasons: (1) The

chunk is already received, (2) The complete object is already received, and (3) The

chunk is being sent by other neighbors. The data is only transmitted if accepted.

Once the target node receives the data, it acknowledges by an ACK. Note that
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all neighbors of the target node also updates their stored cache summaries based

on the broadcast RTSB-Reply and ACK.

6.1.1.4 Utilizing partial multi-hop path

In case of partial multi-hop connectivity exists, we optimize the multi-hop data

forwarding as follows. When a data block is received, a relay propagates the

data back towards its original requester(s) by checking pending requests recently

received from neighbors. If matches are found, the relay initiates a data transmis-

sion for the particular data. In this way, the data is delivered back to the original

requestors via the trail of breadcrumbs. To eliminate redundant transmissions, if

the data matches multiple interests, only one broadcast data transmission is initi-

ated. This approach achieves the same benefit of per-content interest aggregation

as in [7].

6.1.2 Node-Interest propagation

While DTN requests are only transmitted within one hop, the node-interests must

be propagated so that the relays may start requesting data. Note that node-

interests are not instantly flooded. Instead, they are broadcast periodically. This

may affect system scalability when the number of reachable nodes is large. One

potential solution is the following: The nodes periodically broadcast a subset of

received node-interests using a given amount of capacity. The rest of the capacity

is reserved for data requesting and transfer. The order of node-interest broadcasts

are decided using the same node ranking algorithm as that in request generation.

Note that while this greedy approach may lead to better scalability, we evalu-

ate the performance using the simple periodic node-interest dissemination as a

performance benchmark of the system.
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6.1.3 Bandwidth reservation

In DTN mode, the packets are propagated in an epidemic manner. The epidemic

routing consumes much bandwidth and may cause congestion when the network

is partitioned but the isolated ”islands” are dense itself. Therefore, it is impor-

tant to restrict the bandwidth consumed by DTN packets. Therefore, we reserve

BDTNMIN% of the total bandwidth for DTN traffic and restrict the DTN com-

munications to use no more than BDTN% of the bandwidth when the aggregate

traffic of all four forwarding engines exceed the available capacity.

6.1.4 DT-ICAN evaluation

We prove the necessity of the DTN mode, DT-ICAN, by comparing the perfor-

mance of DT-ICAN and non-DTN ICAN, which is referred as ICN in the following,

in sparse scenarios. For fair comparison, the ICN interests are flooded using SF to

guarantee all reachable nodes will receive the instantly propagated interests; relay

nodes are allowed to retransmit a packet by up to 4 times; the relay retransmission

interval is 200ms; the requester continuously re-initiate its interest if data is not

received every 1 second. In addition, each ICN data chunk is requested as soon as

its previous chunk for the data object is received on the requester side to shorten

delay. DT-ICAN broadcasts periodic control messages, i.e., cache summary, re-

quest, node-interest, every 2 seconds. All other settings for ICN and DT-ICAN

are identical. We use IEEE 802.11a MAC/PHY. The data rate is fixed to 36Mbps.

The transmission range is approximately 200 meters.

We measure three metrics: average file retrieval rate, average file completion

delay, and average per-node traffic. The file retrieval rate is defined as the ratio

of number of complete file received to total number of file requested. The file

completion delay is the time elapsed since a file is requested/subscribed on the

requester side until the file is received completely by the requester. To be precise,
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for DT-ICAN, the file is requested at the time the data object is added to the

node interest of the requester; for ICN, the file is requested at the time the first

chunk of the file is requested. The average per-node traffic, which represents the

bandwidth consumption, is the average number of bytes each node transmits per

second.

6.1.4.1 Synthetic trace with Washington DC map

We first simulate a synthetic trace for better understanding of the performance

under various node densities. We downloaded a 2000m by 2000m map of the Wash-

ington, DC area made available by the US Census Bureau’s TIGER database, and

simulating mobility on the map using the Intelligent Driver Model with Intersec-

tion Management by VanetMobisim [68]. This model is complete with intersec-

tions and stop light rules to simulate realistic vehicular traffic. We generate three

scenarios by varying the number of nodes between 50 and 100. The vehicle speed

ranges from 11mph to 40mph. The stay time ranges from 5 to 30 seconds. In all

scenarios, we randomly selected 9 data source nodes, each publishes a 128KB file.

One randomly selected data consumer starts to download all files at 100 second.

The simulation time is 1000 seconds. All experiments are repeated 10 times with

different random seeds and confidence intervals are reported.

Figure 6.1 shows the file retrieval rate of the three scenarios. DT-ICAN out-

performs ICN as end-to-end paths are not available all-time for all data sources.

DT-ICAN’s file retrieval rate increases as the number of nodes increases, and is

able to retrieve all files in the 100 nodes case. On the other hand, ICN is only able

to retrieve around 40% of the files regardless of the node density. Note that even

if the number of nodes increase, network partitioning still always exist due to the

nature of vehicle movement patterns considering traffic lights, and therefore there

are always some nodes not instantly reachable to the requester.
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Figure 6.1: Washington DC map: file retrieval rate

Figure 6.2: Washington DC map: file completion delay
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Figure 6.3: Washington DC map: average traffic

We present the completion delay in figure 6.2. As expected, the completion

delay for both schemes decrease as the number of nodes increases. The reason

is that more caches are available and the chance of node encounters is higher.

DT-ICAN achieves up to 30% lower completion delay than that of ICN, as in DT-

ICAN multiple caches may request different chunks of the same file simultaneously,

leading to better cache diversity than that of ICN. This shows the benefit of data

object-level requesting. That is, multiple relays can download different parts of

the files for a requester in parallel in DT-ICAN. In ICN, the requests are issued

chunk by chunk. Therefore, relays may only request the same chunk(s) at any

given time, and hence causes longer delay in a disruptive scenario.

Finally, the average traffic is shown in Figure 6.3. As expected, the per-

formance gain of DT-ICAN comes with the sacrifice in bandwidth consumption.

DT-ICAN has constant traffic as the control traffic, i.e. periodic control messages,

persists. However, the aggregated traffic is controlled within 10KBps, which is rel-

atively low in the 36MBps channel.
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6.1.4.2 San Francisco taxi trace

In this scenario, we use actual mobility traces of taxi cabs in San Francisco down-

loaded from Crawdad [69]. The simulation runs in a 5700m by 6600m area with

116 taxies. The simulation time is 3600 seconds. Nine data publishers each pub-

lishes a 128KB file. One randomly selected data consumer requests the files. All

experiments are repeated ten times. In this scenario, the nodes are sparse because

only cab movements are recorded in the trace file. This means that the network’s

period of disconnection is likely longer than its connectivity. However, end to end

path still exists in some cases. This trace very well illustrates the case when ICN

is deployed as an overlay.

The simulation results are summarized in Table 6.1. Although the network is

very sparse, given enough execution time, DT-ICAN is still able to achieve 100%

file delivery, double of ICN’s file retrieval ratio. The average completion time of

DT-ICAN is shorter, as expected, and the average traffic is in the same degree as

in the previous experiment. Note that although DT-ICAN outperforms multi-hop

retrieval of ICN in general, we still find the merit of multi-hop direct requesting.

When an end to end path can be found, the completion time can be dramatically

shorter if using multi-hop retrieval. This can be seen by observing the minimum

download completion time among all files’. When an end-to-end path exists, ICN

is able to complete the transfer within a second, while DT-ICAN still needs more

time, i.e. in the degree of tens of seconds, for the epidemic interest propagation.

This is due to the fact that DT-ICAN must wait for the node-interest to reach the

neighbors of data source. Therefore, we suggest an adaptive approach as proposed

in [70], in which the retrieval only switches to DTN mode when the end-to-end

connectivity is judged inexistent.

We also explored the parameter space of DT-ICAN in this real-world scenario.

The most fundamental parameter in DT-ICAN is the interval for periodic control

89



DT-ICAN Mean(Var) ICN Mean(Var)

File retrieval rate 1 (0) 0.55 (0)

Completion time 821.11 (25.52) 1353.94 (0.61)

Per-node traffic (KBps) 13.43 (2.8) 0.36 (0.02)

Minimum completion

time

6.5448 (2.82) 0.2271 (0.03)

Table 6.1: Taxi trace simulation results

messages. In this experiment, we vary these intervals. The completion delay is

presented in Figure 6.4. As we can see, the lower completion delay is achieved

at interval 2 seconds. Shorter intervals cause slightly higher delay due to the

queueing time of the messages. Longer intervals also have higher delay since the

data transmissions are triggered more slowly. Due to the limited space, the file

retrieval rate and traffic are omitted. DT-ICAN is able to retrieve all files with

any settings, and the average per-node traffic remains close to 6KBps for interval

larger than 1 second. Therefore, we judge that the 2 second interval is the optimal

setting.

6.2 Network Coded DT-ICAN

6.2.1 Network Coding

In disruptive scenarios, given the limited contact duration, the relays are most

likely to obtain only partial files. These pieces may be different but some of them

are repeated at each relay. Thus, when requesting a data object from multiple

relays, the pieces are likely to arrive out of order. In addition, missing pieces

make it difficult for a receiver to reliably reconstruct a file. This is so-called last

coupon problem.
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Figure 6.4: Varying control message interval: completion delay

One potential remedy of last coupon problem is network coding. Network

coding [71, 72] has been used in MANET [33] for data dissemination to overcome

this issue. With network coding, the content originator and the relays encode

and re-encode as the available chunks of a file as coded blocks, and propagate the

coded blocks to the network. The algorithm of network coding is as follows. A

source node publishes a file F . In order to disseminate the file in pieces using

network coding, the source node first transforms F into a set of m vectors (i.e.

chunks) v1, ...,vm in an n-dimensional vector space over a finite field GFp where

p is a prime number. These vectors are then linearly combined by drawing from

the finite field GFp an encoding coefficient ei to linearly combine with the vector

to create m coded blocks b1, ...,bm. The set of these coefficients then forms the

encoding vector e with [e1, ...en]. To reconstruct the file, a node simply must

receive enough linearly independent coded blocks to be able to perform matrix

inversion. First, we take the transpose of the received vectors such that ET =

[eT
1, ..., e

T
n], BT = [bT

1, ...,b
T
n] and VT = [vT

1, ...,v
T
n]. Then we take E−1B

which will then reconstruct all the original blocks in the file. Figure 6.5 illustrates
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how the receiver can fetch linear coded blocks from multiple sources.

Figure 6.5: A receiver fetches data object from multiple caches using network

coding.

The major advantage of this approach is that out-of-order is no longer an issue.

The requester can retrieve coded blocks from any node, and reassemble the original

file as long as it obtains enough number of linearly independent blocks. As each

independently generated coded blocks are likely to be linearly independent, the

bandwidth saving in a disruptive scenario due to control overhead and redundant

data blocks at relays can be huge. However, network coding exposes security

concerns in an ICN due to the possibility of pollution attack. Meanwhile, network

coding also requires extra packet overhead to carry the coefficients and extra

processing time dedicated to the encoding/decoding process. In the following,

we first discuss and evaluate the design options of secure network coding in DT-

ICAN. Later, we evaluate the network coded DT-ICAN in smartphone testbed

for its performance gain and processing overhead.
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6.2.2 Network coding security and design options

Traditional random linear network coding in MANETs [33] forces re-encoding

any available chunks at relays even if the cached data objects are partial. This

approach is referred as unrestricted coding in the following discussion. The benefit

of unrestricted coding is its high data dissemination efficiency and resistance to

coupon collector problem. However, it is fragile to pollution attack. Imagine a

malicious node injects invalid coded blocks into the network. With unrestricted

coding, these polluted blocks are re-encoded with valid coded blocks by honest

intermediate nodes.

In order to control the damage of pollution attack, the direct approach is to re-

quire all encoders sign the coded blocks so that if a pollution attack is detected, the

malicious node can be identified and blacklisted. Previous network coding studies

proposed to use homomorphic signature [73, 74, 75], which is preserved through

linear combinations. However, the processing cost of homomorphic signatures is

two order of magnitude higher than the encoding cost, making it prohibitive on

smaller devices such as smart phones. Since a signature implies that the signer

has verified the data object, without using homomorphic signatures, an interme-

diate node must only sign a coded block if he has received the full data object and

verified the integrity of the decoded data object. Since caches may often consist

of only partial objects in disruptive environments, unrestricted coding prevents

the use of signatures. To this end, we consider two alternative network coding

approaches that are secure and feasible:

• Source only coding : allows only the publisher to encode and to sign all the

coded blocks.

• Full cache coding : allows certified intermediate nodes that have fully re-

assembled the data object to perform re-encoding. The certified intermedi-

ate node also signs the regenerated coded blocks in addition to the originator.
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There is a tradeoff between the dissemination efficiency and the processing

overhead between source only coding and full cache coding. In this section, we

(1) evaluate the performance gain of full cache coding over source only coding,

and (2) measure how much sacrifices are made for security concern, that is, the

performance difference between unrestricted coding and the above two secure

alternatives.

6.2.3 Performance And Reliability Analysis

We first analyze the performance of no coding, source only coding, unrestricted

coding and full-cache coding. In a disruptive scenario, the intermittency enlarges

the waiting time between each blocks and thus higher the chance of multiple full

caches before the data object retrieval is complete, the performance of network

coding approaches are less predictable by analysis in DTN mode. Thus, we analyze

the performance of each approach under a static scenario with random packet

losses as a start, and carry out our hypothesis for mobile scenarios later.

Consider the corridor model in Figure 6.6. The origin of the file is the node

S. Node R has issued a node-interest. For simplicity, we assume the node-interest

contains the interest for only one data object and the node-interest and data are

propagated immediately. In addition, we assume pure broadcast without mech-

anisms such as retransmission and reliable protocols. The node-interest traces

three paths by propagation. The model depicts an arbitrary situation when the

data object is transmitted through three disjoint ”paths”, that is, a set of carry-

and-forward relays.

6.2.3.1 No Coding

Without network coding, the only way to compensate loss is by duplicate trans-

missions. We consider the braid scenario in Figure 6.6 as an h hop network since
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Figure 6.6: 1-3-3-1 corridor model [1]

a packet can be propagated by either of the three relays at each of the h stages

and reach the node R in h hops.

Each chunk is triplicated by broadcast. Thus, 3 copies travel along the braid.

Suppose each chunk has a chance to be lost in each single-hop transmission under

random channel loss. If we define the transmission time of each chunk is T between

each hop, the minimum time for N chunks to propagated over h hops is

Tb = max(N, h)T (6.1)

Consider a brute-force approach for loss recovery in which all nodes send du-

plicate chunks in advance. To ensure the perfect delivery in Figure 6.6, suppose

the link loss rate is l, each relay must transmit d1
l
e duplicates, meaning the band-

width consumption will always be d1
l
e times of the original one and the delay at

the receiver must be close to d1
l
eTb. One may also consider retransmission upon

requests, but this leads to even longer delay as the packet loss can only be detected

by timeouts.
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6.2.3.2 Source Only Coding

Now suppose the source encodes the blocks. By the principle of linear algebra, the

node R is able to reassemble the data object as long as it receives enough number

of encoded blocks. In this case, suppose the link loss rate can be estimated, the

source S may calculate the number of blocks needed to ensure successful delivery.

For example, given the link loss rate l, the probability of successfully deliver a

coded block to the node R over h hops on a path i is

Pi = (1− l)h (6.2)

For the braid topology in Figure 6.6, the probability of a block loss on all k paths

is

lall = (1− l)hk (6.3)

Therefore, the expected number of coded blocks to be transmitted from the source

is

Na =
1

(1− l)hk
(6.4)

Hence, the expected delay of the data object propagation is NaTb. In other words,

source coding has a performance gain as long as Na < 1
l
, for example, when

l ≤ 0.17 for this particular braid scenario (hk = 9).

6.2.3.3 Unrestricted Coding

We now discuss the performance of unrestricted coding. Consider Figure 6.6, if

coded blocks are transmitted at the time right when they are received at the relays,

intermediate node re-encoding is not useful and the performance gain is equivalent

to that of source encoding. In order to benefit from unrestricted coding we must

assume multiple blocks are accumulated at the relays and re-encoded to generate

new encoded blocks and thus provide better block diversity. In this case, if a block

is lost on a strand of the braid, the next coded block will allow recovery. The more
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blocks accumulated at a node, the more losses we can recover by the intermediate

node generated, new linearly independent blocks. In addition, when the blocks

are reassembled at the end, the triple redundancy of the three strands also comes

to help. In all, in order to accumulate at least two blocks for re-encoding at each

hop, the minimum delay of unrestricted coding is hT + Tb.

6.2.3.4 Full Cache Coding

Now consider the case of full cache coding. Suppose the blocks are coded at the

source and broadcast. As unrestricted coding, full cache coding only improves the

performance if the intermediate nodes can re-encode the blocks. Therefore, full

cache coding nodes must assemble the data objects first before re-encoding to out-

perform source only coding. If all blocks must be accumulated before forwarding,

the delay can be as high as hNT . However, we are interested in the case where we

allow the nodes start forwarding source-encoded blocks before they assembled the

data object, and continue with innovative blocks when they receive the full data

object. Once the upstream nodes have assembled the files, they can re-encode

the blocks and generate as many new coded blocks as necessary to compensate

for the lost blocks. The reliability gain of full cache coding, once the cache has

already obtained the full file, is as good as the unrestricted coding’s, but the min-

imum delay can be as short as Tb suppose the best case when all transmissions

are successful.

The performance gain difference of full cache coding and unrestricted coding

comes from the duration when the full data object has not been received by the

intermediate nodes, and all intermediate nodes are getting the same set of blocks

from upstream. During this time, the performance gain of full cache coding is

the same as that of source only coding. In a static scenario where the processing

and transmission delay are minimal and no waiting time or source diversity, the

performance gain of full cache coding over source only coding depends on the loss
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probability. For the static braid scenario, if the loss probability is high and assum-

ing the source keeps populating new coded blocks to the network, the chance that

some of the caches receive the full data object before the receiver receives enough

blocks is high under high loss rate. Therefore, the higher the loss probability is,

the larger the performance gain of full cache coding is. As mobility comes in so

that the hop by hop transmission time is enlarged, full cache coding has more time

and higher chance to accumulate blocks and encode, and therefore will perform

more closely to unrestricted coding.

6.2.4 Hypothesis

According to the above analysis, we have the following hypotheses for mobile and

intermittent scenarios:

1. Full cache coding provides higher performance gain than source

only coding. Suppose there is only one originator in the network for the

particular file. Once the blocks have been reassembled by caches, a receiver

may receive blocks from multiple caches, as argued in 6.2.3.4. On the other

hand, if there are multiple originators for the same file, the block diversity

provided by multiple originators may shorten the performance gain differ-

ence between source only coding and full cache coding.

2. Full cache coding provides comparable performance to unrestricted

coding in an intermittent network. As the network is intermittent, the

blocks received by each partial cache are more likely to be different and thus

linearly independent by nature. Meanwhile, consider the case that after a

sufficient time of operations, when there are already multiple full caches in

the intermittent scenario, the encoded blocks provided by them can offer suf-

ficient diversity even if the partial caches do not re-encode. In this case, the

performance of full cache coding can be comparable to that of unrestricted

98



coding. Considering full cache coding has the advantage of pollution attack

protection, it is a better coding approach for DT-ICAN if the performance

gain is comparable to that of unrestricted coding.

6.2.5 Simulation

We evaluate the performance of unrestricted coding, full-cache coding, source-only

coding, and no coding by simulation using DT-ICANSIM 1, which is implemented

in Qualnet 6.1.

6.2.5.1 Static scenario

Figure 6.7: Simulation results: corridor model with 30% loss probability

We first examine a static, lossy scenario using the corridor model in Figure 6.6.

The loss rate is 30%. The MAC layer uses IEEE 802.11a and data rate 54Mbps.

The transmission range is about 70 meters. In this scenario, we have one publisher

and one subscriber. For simplicity, we evaluate a single file transmission. Note

1https://github.com/uclanrl/dt-icansim
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that our results can be generalized to multiple files as our technique is not bound

to number of files. For no coding, we consider the case without the brute-force

loss recovery in the simulation.

The results are shown in Figure 6.7. We observe that as expected, the per-

formance gain of the three network coding approaches follows Unrestricted coding

> Full cache coding > Source only coding. This matches our analysis as the unre-

stricted coding has the advantage of intermediate node re-encoding before the full

file is received by the intermediate nodes. Full cache coding performs better than

source only coding due to the ability to add diversity after the full file is obtained

by the intermediate caches under high loss probability.

6.2.5.2 Mobile scenario

We next study a mobile scenario using random waypoint model. This scenario

consists of 10 nodes, including three publishers and seven receivers. The territory

size is 1000 by 1000 meters. The parameters of the random waypoint model are

minimum speed of 1 m/s, maximum speed of 3 m/s, pause time of 1 second, and

a total duration of 10 minutes.

The results for our mobile scenario is presented in Figure 6.8. Despite the

similar performance, looking into the slightly different performance gain, among

the three network coding approaches, full cache coding does the best. More data

objects are delivered within 20 seconds by full cache coding and source only cod-

ing than unrestricted coding. The reason is that as unrestricted coding requires

accumulating innovative blocks before starting forwarding, in the intermittent

scenario, the delay can become longer due to the time for accumulation, and the

other two outperform when the network is more connected by simply forwarding

single blocks at some relays. When it comes to the time the network is more

disruptive, full cache coding outperforms source only coding successfully deliver

100



Figure 6.8: Simulation results: random waypoint

more data objects with higher delay. In all, the results show that the intermittence

and multi-source have offered enough diversity for full cache coding and source

only coding, and thus the performance gain is comparable to that of unrestricted

coding. Given the fact that full cache coding naturally creates more sources and

its resistance to pollution attacks, full cache coding is an ideal approach for coding

in DT-ICAN.

6.3 Testbed evaluation

Given the above results, we select full cache coding as our network coding ap-

proach. Even if the re-encoding is restricted to full caches, coding requires extra

packet overhead to carry the coefficients and extra processing time dedicated to the

encoding/decoding process. In some cases, randomizing the order of the chunks

may provide enough diversity without excessive processing. In this section, we ex-

plore this possibility in practical military DTN scenario and explore the tradeoff
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between the performance gain and processing overhead.

6.3.1 Emulation

6.3.1.1 Emulation settings

In order to better understand the tradeoff between the performance gain and pro-

cessing and transmission overhead, we use emulation for this study. The network

emulation is done using EMANE 802.11 [76], which includes a path loss model

and interface to the real-time Common Open Resource Emulator, CORE 4.3 [77],

thus allowing us to run realistic emulation experiments on real hardware.

We first compare the performance of source coding and full cache network

coding and the original randomized chunk delivery mechanism of DT-ICAN, de-

noted by no coding thereafter, in which when a request for data object is received

at a data source or relay, data chunks are sent by a randomly permuted order.

The metrics evaluated include delivery fraction and average delay. The delivery

fraction is calculated as the fraction of the total number of data objects received

to the expected number of data objects that should be received in the system.

The delivery fraction is computed system-wise. The same data object requested

by multiple requesters are counted multiple times. That is, if two requesters ask

for the same data objects, we consider the expected number of data objects to

be received as two. The average delay is defined as the interval between the data

object is requested to the data object is received for each requester.

6.3.1.2 Data Mule Scenario

We first test the performance of full cache coding, source only coding, and no

coding in a data mule scenario (Figure 6.9). The scenario is inspired by a practical

military VANET scenario in which two squads (16 and 12 members each) exchange

information through mobile vehicles (data mules). In this scenario, we assume
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Figure 6.9: Data mule scenario

three data mule nodes ferry data objects between two large groups (grids) of

nodes. Each node within the grid is 30 meters apart from each other. In each

grid, there are three publishers, and each publishes a 512K data object. We

assume a data dissemination application and thus the total of six data objects are

subscribed by all nodes. The data mule speed is 1.4 m/s. Each data mule is out of

range of other data mules and stays within range to each grid for 20 seconds. The

experiment duration is 600 seconds. This model allows us to evaluate the effects

of largely connected groups interconnected by a short-term and low-bandwidth

connection. We expect to see the coupon collector problem slowing down cross

pollination file reconstruction between the two groups.

Delivery Fraction Average Delay

(seconds)

Std Deviation

No Coding 58.3% 68.5095 42.2422

Source only cod-

ing

78.3% 66.7729 47.8758

Full cache coding 100% 70.8891 43.4677

Table 6.2: Data mule scenario results

In Table 6.2, we observe that full cache coding delivers close to twice the

103



number of files of no coding and also outperforms source only coding. No coding

has low delivery fraction due to the coupon collector problem. The data mules

provide only short contact and thus insufficient bandwidth for complete data

object deliveries via each data mule at each contact. Full cache coding ensures

higher diversity of blocks and consequently better bandwidth utilization, while

with no coding the data mules are more likely to carry redundant chunks, even

with the randomization. The per-data object delay of source coding is shorter

than full cache coding due to its low processing overhead. However, the delivery

fraction of source only coding is still lower as the existence of full caches can

further improve total bandwidth utilization in this scenario.

We ran several variations of the study to examine the effects of increasing the

number of data mules and the duration each data mule stayed connected with

each squad. Interestingly, even varying the number of data mules or the stay du-

ration while still maintaining the scenario duration of 600 seconds, no coding still

cannot achieve 100% delivery fraction. Therefore, we judge that low-bandwidth

interconnects due to mobility and packet loss require the use of intermediate node

coding.

6.3.1.3 Search Patrol Scenario

Consider the search patrol model (Figure 6.10), where a search patrol visits ren-

dezvous points and shares reconnaissance and updates info. In the search patrol

scenario, there are 2 squads with 14 members each. Each squad is composed of

subgroups (2 subgroups of 7 members) to avoid the enemy wiping out the en-

tire squad with a single shot. Intra-squad communication using 802.11 occurs

periodically at each rendezvous (central server, hot spot, and red box).

Both the central server at rendezvous 1 and rendezvous 2 publish a 1MB file

to squad 1 and squad 2, respectively. Additionally, squad 1 and squad 2 upload
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Figure 6.10: Search patrol scenario: 2 squads (composed of 3 sub-squads) walk in

a triangle pattern between 3 rendezvous points.
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their collected data objects to server 1 and server 2, respectively. Each scout

in each subgroup takes a 512KB picture at the hot zone and performs intra-

subgroup sharing between and within each rendezvous. This results in a total

of 4 data objects published and shared to a total of 30 subscribers. Intra-squad

sharing occurs only at each rendezvous point. Inter-squad file sharing occurs in

the middle red box. Due to intermittence, each node is likely to holds only partial

data object during the first few cycles. The partial caches consist of the files from

central server 1, central server 2, and pictures taken at the hot zone. The cycling

continues for 600 seconds.

Delivery Fraction Average Delay

(seconds)

Std Deviation

No Coding 82.9% 245.888 182.097

Source Coding 85.3% 186.159 186.12

Full cache coding 100% 106.928 86.0384

Table 6.3: Search patrol emulation scenario with 20 second rendezvous.

Delivery Fraction Average Delay

(seconds)

Std Deviation

No Coding 100% 130.086 115.55

Source Coding 100% 88.5397 81.7264

Full cache coding 100% 96.1285 85.3548

Table 6.4: Search patrol emulation scenario with 45 second rendezvous.

We compare a short duration stay of 20 seconds to a longer duration stay of 45

seconds as seen in Table 6.3 and Table 6.4 respectively. With higher intermittency

degree (20 second rendezvous time), only full cache coding is able to achieve 100%

delivery due to its ability to overcome the coupon collector problem. However, in
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extended connectivity (45 second rendezvous time), all approaches can achieves

100% delivery. Meanwhile, source only coding achieves lowest average delay in this

case. This scenario demonstrates that the variation of environmental parameters

results in two different outcomes: namely, one where full cache coding is required

and one where full cache coding may backfire due to its higher processing overhead.

In all cases, full cache coding is sufficient to deliver all data objects if a low delay

is not required. Therefore, we judge that full cache coding is a useful technique in

disruptive scenarios. In addition, we observe the potential of enhancing network

coding performance by restricting intermediate node coding under assistance of

mobility pattern awareness. We list this potential enhancement as a possible

future work.
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CHAPTER 7

Conclusion

We present ICAN, an ICN-based ad-hoc networking architecture. ICAN general-

izes the well-known named data principle of ICN. In ICAN, names are assigned

not only to data, but also to physical entities such as hosts and geographic ar-

eas. Being a superset of existing ICN and host-based networks, ICAN provides

built-in network condition and application context awareness together with the

broad network entity definitions, thus enabling the dynamic adoption of network

operations like routing and caching mechanisms.

ICAN achieves high efficiency, flexibility and backward-compatibility. Unlike

current ICN proposals, ICAN supports push transport and context-aware for-

warding and caching. This work aims at improving the ad-hoc ICN efficiency by

utilizing the context awareness in all aspects. We extensively study the design

options of VANET ICN system by practical large-scale simulation. We also im-

plement a proof of concept prototype on our Android testbed. We conclude that

pervasive caching is critical and source-only routing is sufficient in VANETs. With

this insight, we propose context aware content discovery mechanism for ICAN. In

addition to the extensive study in urban VANET scenarios, we further explore

efficient data propagation for the DTN mode of ICAN. We utilize secure network

coding technique to speed up the data retrieval in intermittent scenarios. In our

smartphone emulation testbed, we verify that network coding is helpful even after

accounting for its additional processing overhead.

108



References

[1] S. Y. Oh, M. Gerla, and A. Tiwari, “Robust manet routing using adaptive
path redundancy and coding,” in Proceedings of the First international con-
ference on COMmunication Systems And NETworks, COMSNETS’09, (Pis-
cataway, NJ, USA), pp. 224–233, IEEE Press, 2009.

[2] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt, et al., “Towards fully autonomous
driving: Systems and algorithms,” in Intelligent Vehicles Symposium (IV),
2011 IEEE, pp. 163–168, IEEE, 2011.

[3] A. Brown, “Google’s autonomous car applies lessons learned from driverless
races,” Mechanical Engineering, vol. 133, no. 2, p. 31, 2011.

[4] U. Lee, B. Zhou, M. Gerla, E. Magistretti, P. Bellavista, and A. Corradi,
“Mobeyes: smart mobs for urban monitoring with a vehicular sensor net-
work,” Wireless Communications, IEEE, vol. 13, no. 5, pp. 52–57, 2006.

[5] U. Lee, E. Magistretti, M. Gerla, P. Bellavista, and A. Corradi, “Dissemina-
tion and harvesting of urban data using vehicular sensing platforms,” Vehic-
ular Technology, IEEE Transactions on, vol. 58, no. 2, pp. 882–901, 2009.

[6] A. Nandan, S. Das, G. Pau, M. Gerla, and M. Sanadidi, “Co-operative down-
loading in vehicular ad-hoc wireless networks,” in Wireless On-demand Net-
work Systems and Services, 2005. WONS 2005. Second Annual Conference
on, pp. 32–41, IEEE, 2005.

[7] V. Jacobson, M. Mosko, D. Smetters, and J. Garcia-Luna-Aceves, “Content-
centric networking,” Whitepaper, Palo Alto Research Center, pp. 2–4, 2007.

[8] S. Biswas and R. Morris, “Opportunistic routing in multi-hop wireless net-
works,” ACM SIGCOMM Computer Communication Review, vol. 34, no. 1,
pp. 69–74, 2004.

[9] A. Iwata, C.-C. Chiang, G. Pei, M. Gerla, and T.-W. Chen, “Scalable routing
strategies for ad hoc wireless networks,” Selected Areas in Communications,
IEEE Journal on, vol. 17, no. 8, pp. 1369–1379, 1999.

[10] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker,
and I. Stoica, “A data-oriented (and beyond) network architecture,” in ACM
SIGCOMM Computer Communication Review, vol. 37, pp. 181–192, ACM,
2007.

[11] C. Dannewitz, “Netinf: An information-centric design for the future inter-
net,” in Proc. 3rd GI/ITG KuVS Workshop on The Future Internet, 2009.

109



[12] M. D’Ambrosio, C. Dannewitz, H. Karl, and V. Vercellone, “Mdht: a hierar-
chical name resolution service for information-centric networks,” in Proceed-
ings of the ACM SIGCOMM workshop on Information-centric networking,
pp. 7–12, ACM, 2011.

[13] J. Wang, R. Wakikawa, and L. Zhang, “Dmnd: Collecting data from mobiles
using named data,” in Vehicular Networking Conference (VNC), 2010 IEEE,
pp. 49–56, IEEE, 2010.

[14] J. L. D. K. Myeong-Wuk and J. B.-J. Lee, “Proxy-based mobility manage-
ment scheme in mobile content centric networking (ccn) environments,” Con-
sumer Electronics (ICCE), 2011 IEEE International Conference on, 2011.

[15] S. Oh, D. Lau, and M. Gerla, “Content centric networking in tactical and
emergency manets,” in Wireless Days (WD), 2010 IFIP, pp. 1–5, 2010.

[16] M. Varvello, I. Rimac, U. Lee, L. Greenwald, and V. Hilt, “On the design
of content-centric manets,” in Wireless On-Demand Network Systems and
Services (WONS), 2011 Eighth International Conference on, pp. 1–8, IEEE,
2011.

[17] M. Meisel, V. Pappas, and L. Zhang, “Listen first, broadcast later: Topology-
agnostic forwarding under high dynamics,” in Annual Conference of Interna-
tional Technology Alliance in Network and Information Science, p. 8, 2010.

[18] M. Amadeo, A. Molinaro, and G. Ruggeri, “E-chanet: Routing, forwarding
and transport in information-centric multihop wireless networks,” Computer
Communications, 2013.

[19] M. Amadeo, C. Campolo, and A. Molinaro, “Crown: Content-centric net-
working in vehicular ad hoc networks,” 2012.

[20] M. Amadeo, C. Campolo, and A. Molinaro, “Content-centric networking:
is that a solution for upcoming vehicular networks?,” in Proceedings of the
ninth ACM international workshop on Vehicular inter-networking, systems,
and applications, pp. 99–102, ACM, 2012.

[21] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector rout-
ing,” in Mobile Computing Systems and Applications, 1999. Proceedings.
WMCSA’99. Second IEEE Workshop on, pp. 90–100, IEEE, 1999.

[22] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wire-
less networks,” Kluwer International Series in Engineering and Computer
Science, pp. 153–179, 1996.

[23] G. Pei, M. Gerla, and T.-W. Chen, “Fisheye state routing: A routing scheme
for ad hoc wireless networks,” in Communications, 2000. ICC 2000. 2000
IEEE International Conference on, vol. 1, pp. 70–74, IEEE, 2000.

110



[24] T. Clausen, P. Jacquet, C. Adjih, A. Laouiti, P. Minet, P. Muhlethaler,
A. Qayyum, L. Viennot, et al., “Optimized link state routing protocol (olsr),”
2003.

[25] S. Keshav, “An engineering approach to computer networking: Atm net-
works, the internet, and the telephone network,” Reading MA, vol. 11997,
1997.

[26] A. Qayyum, L. Viennot, and A. Laouiti, “Multipoint relaying for flooding
broadcast messages in mobile wireless networks,” in System Sciences, 2002.
HICSS. Proceedings of the 35th Annual Hawaii International Conference on,
pp. 3866–3875, IEEE, 2002.

[27] Y.-B. Ko and N. H. Vaidya, “Location-aided routing (lar) in mobile ad hoc
networks,” Wireless Networks, vol. 6, no. 4, pp. 307–321, 2000.

[28] B. Karp and H.-T. Kung, “Gpsr: Greedy perimeter stateless routing for
wireless networks,” in Proceedings of the 6th annual international conference
on Mobile computing and networking, pp. 243–254, ACM, 2000.

[29] A. Vahdat, D. Becker, et al., “Epidemic routing for partially connected ad hoc
networks,” tech. rep., Technical Report CS-200006, Duke University, 2000.

[30] B. Burns, O. Brock, and B. N. Levine, “Mora routing and capacity building
in disruption-tolerant networks,” Ad hoc networks, vol. 6, no. 4, pp. 600–620,
2008.

[31] R. Ramanathan, R. Hansen, P. Basu, R. Rosales-Hain, and R. Krishnan,
“Prioritized epidemic routing for opportunistic networks,” in Proceedings of
the 1st international MobiSys workshop on Mobile opportunistic networking,
pp. 62–66, ACM, 2007.

[32] C. Boldrini, M. Conti, and A. Passarella, “Impact of social mobility on rout-
ing protocols for opportunistic networks,” in World of Wireless, Mobile and
Multimedia Networks, 2007. WoWMoM 2007. IEEE International Sympo-
sium on a, pp. 1–6, IEEE, 2007.

[33] U. Lee, J.-S. Park, J. Yeh, G. Pau, and M. Gerla, “Code torrent: content
distribution using network coding in vanet,” in Proceedings of the 1st inter-
national workshop on Decentralized resource sharing in mobile computing and
networking, MobiShare ’06, (New York, NY, USA), pp. 1–5, ACM, 2006.

[34] J.-S. Park, M. Gerla, D. Lun, Y. Yi, and M. Medard, “Codecast: a network-
coding-based ad hoc multicast protocol,” Wireless Communications, IEEE,
vol. 13, no. 5, pp. 76–81, 2006.

111



[35] M.-J. Montpetit, C. Westphal, and D. Trossen, “Network coding meets
information-centric networking: an architectural case for information disper-
sion through native network coding,” in Proceedings of the 1st ACM workshop
on Emerging Name-Oriented Mobile Networking Design - Architecture, Algo-
rithms, and Applications, NoM ’12, (New York, NY, USA), pp. 31–36, ACM,
2012.

[36] Q. Wu, Z. Li, and G. Xie, “Codingcache: multipath-aware ccn cache with
network coding,” in Proceedings of the 3rd ACM SIGCOMM workshop on
Information-centric networking, ICN ’13, (New York, NY, USA), pp. 41–42,
ACM, 2013.

[37] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, Trading structure for
randomness in wireless opportunistic routing, vol. 37. ACM, 2007.

[38] C.-C. Chen, G. Tahasildar, Y.-T. Yu, J.-S. Park, M. Gerla, and M. Sanadidi,
“Codemp: Network coded multipath to support tcp in disruptive manets,”
in Mobile Adhoc and Sensor Systems (MASS), 2012 IEEE 9th International
Conference on, pp. 209–217, IEEE, 2012.

[39] Y. Lin, B. Li, and B. Liang, “Efficient network coded data transmissions in
disruption tolerant networks,” in INFOCOM 2008. The 27th Conference on
Computer Communications. IEEE, IEEE, 2008.

[40] M. Chuah, P. Yang, S. Roy, and B. Sheng, “Performance evaluation of dissem-
ination schemes for coded packets in heterogeneous sparse ad hoc networks.,”
Ad Hoc And Sensor Wireless Networks, vol. 15, no. 2-4, pp. 151–181, 2012.

[41] P. Mundur and M. Seligman, “Delay tolerant network routing: Beyond epi-
demic routing,” in Wireless Pervasive Computing, 2008. ISWPC 2008. 3rd
International Symposium on, pp. 550–553, IEEE, 2008.

[42] E. C. de Oliveira and C. V. de Albuquerque, “Nectar: a dtn routing protocol
based on neighborhood contact history,” in Proceedings of the 2009 ACM
symposium on Applied Computing, pp. 40–46, ACM, 2009.

[43] C. Tsilopoulos and G. Xylomenos, “Supporting diverse traffic types in infor-
mation centric networks,” in Proceedings of the ACM SIGCOMM workshop
on Information-centric networking, pp. 13–18, ACM, 2011.

[44] Z. Zhu, S. Wang, X. Yang, V. Jacobson, and L. Zhang, “Act: audio conference
tool over named data networking,” in Proceedings of the ACM SIGCOMM
workshop on Information-centric networking, pp. 68–73, ACM, 2011.

[45] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible markup language (xml),” World Wide Web Consortium Rec-
ommendation REC-xml-19980210. http://www. w3. org/TR/1998/REC-xml-
19980210, 1998.

112



[46] J. Scott, J. Crowcroft, P. Hui, C. Diot, et al., “Haggle: A networking archi-
tecture designed around mobile users,” in WONS 2006: Third Annual Con-
ference on Wireless On-demand Network Systems and Services, pp. 78–86,
2006.

[47] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[48] U. Lee, J. Lee, J.-S. Park, and M. Gerla, “Fleanet: A virtual market place on
vehicular networks,” Vehicular Technology, IEEE Transactions on, vol. 59,
no. 1, pp. 344–355, 2010.

[49] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the gain:
Incrementally deployable icn,” SIGCOMM Comput. Commun. Rev., vol. 43,
pp. 147–158, Aug. 2013.

[50] C. L. Miller, “Tiger/line files technical documentation. ua 2000. us depart-
ment of commerce, geography division, us census bureau.”

[51] D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner, “Sumo (simulation of
urban mobility),” in Proc. of the 4th Middle East Symposium on Simulation
and Modelling, pp. 183–187, 2002.

[52] E. Giordano, R. Frank, G. Pau, and M. Gerla, “Corner: a realistic urban
propagation model for vanet,” in Wireless On-demand Network Systems and
Services (WONS), 2010 Seventh International Conference on, pp. 57–60,
IEEE, 2010.

[53] P. Barford and M. Crovella, “Generating representative web workloads for
network and server performance evaluation,” ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 26, no. 1, pp. 151–160, 1998.

[54] M. E. Crovella and A. Bestavros, “Self-similarity in world wide web traf-
fic: evidence and possible causes,” Networking, IEEE/ACM Transactions
on, vol. 5, no. 6, pp. 835–846, 1997.

[55] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
zipf-like distributions: Evidence and implications,” in INFOCOM’99. Eigh-
teenth Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, vol. 1, pp. 126–134, IEEE, 1999.

[56] D. Rossi and G. Rossini, “Caching performance of content centric networks
under multi-path routing (and more),” Relatório técnico, Telecom ParisTech,
2011.

113



[57] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox,
“Information-centric networking: seeing the forest for the trees,” in Proceed-
ings of the 10th ACM Workshop on Hot Topics in Networks, p. 1, ACM,
2011.

[58] L. Guo, E. Tan, S. Chen, Z. Xiao, and X. Zhang, “Does internet media traffic
really follow zipf-like distribution?,” in SIGMETRICS, vol. 7, pp. 359–360,
2007.

[59] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A
survey,” Internet mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[60] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scal-
able wide-area web cache sharing protocol,” IEEE/ACM Transactions on
Networking (TON), vol. 8, no. 3, pp. 281–293, 2000.

[61] P. Gu, J. Wang, and H. Cai, “Asap: An advertisement-based search algorithm
for unstructured peer-to-peer systems,” in Parallel Processing, 2007. ICPP
2007. International Conference on, pp. 8–8, IEEE, 2007.

[62] P. Boldi and S. Vigna, “Mutable strings in java: design, implementation
and lightweight text-search algorithms,” Science of Computer Programming,
vol. 54, no. 1, pp. 3–23, 2005.

[63] P. S. Almeida, C. Baquero, N. Preguiça, and D. Hutchison, “Scalable bloom
filters,” Information Processing Letters, vol. 101, no. 6, pp. 255–261, 2007.

[64] Y.-T. Yu, T. Punihaole, M. Gerla, and M. Sanadidi, “Content routing in
the vehicle cloud,” in MILITARY COMMUNICATIONS CONFERENCE,
2012-MILCOM 2012, pp. 1–6, IEEE, 2012.

[65] M. Grossglauser and M. Vetterli, “Locating mobile nodes with ease: learning
efficient routes from encounter histories alone,” IEEE/ACM Transactions on
Networking (TON), vol. 14, no. 3, pp. 457–469, 2006.

[66] N. Sarafijanovic-Djukic and M. Grossglauser, “Last encounter routing under
random waypoint mobility,” in NETWORKING 2004. Networking Technolo-
gies, Services, and Protocols; Performance of Computer and Communica-
tion Networks; Mobile and Wireless Communications, pp. 974–988, Springer,
2004.

[67] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker, “Ght: a geographic hash table for data-centric storage,” in Pro-
ceedings of the 1st ACM international workshop on Wireless sensor networks
and applications, pp. 78–87, ACM, 2002.

114



[68] J. Härri, F. Filali, C. Bonnet, and M. Fiore, “Vanetmobisim: generating
realistic mobility patterns for vanets,” in Proceedings of the 3rd international
workshop on Vehicular ad hoc networks, pp. 96–97, ACM, 2006.

[69] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “CRAW-
DAD data set epfl/mobility (v. 2009-02-24).” Downloaded from
http://crawdad.org/epfl/mobility/, Feb. 2009.

[70] Y.-T. Yu, C. Tandiono, X. Li, Y. Lu, M. Sanadidi, and M. Gerla, “Ican:
Information-centric context-aware ad-hoc network,”

[71] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong,
“A random linear network coding approach to multicast,” Information The-
ory, IEEE Transactions on, vol. 52, no. 10, pp. 4413–4430, 2006.

[72] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network coding: an instant
primer,” ACM SIGCOMM Computer Communication Review, vol. 36, no. 1,
pp. 63–68, 2006.

[73] S.-H. Lee, M. Gerla, H. Krawczyk, K.-W. Lee, and E. Quaglia, “Performance
evaluation of secure network coding using homomorphic signature,” in Net-
work Coding (NetCod), 2011 International Symposium on, pp. 1–6, 2011.

[74] R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin, “Secure network coding
over the integers,” in Proceedings of the 13th International Conference on
Practice and Theory in Public Key Cryptography, PKC’10, (Berlin, Heidel-
berg), pp. 142–160, Springer-Verlag, 2010.

[75] D. Boneh, D. Freeman, J. Katz, and B. Waters, “Signing a linear subspace:
Signature schemes for network coding,” in Proceedings of the 12th Interna-
tional Conference on Practice and Theory in Public Key Cryptography: PKC
’09, Irvine, (Berlin, Heidelberg), pp. 68–87, Springer-Verlag, 2009.

[76] “Emane.” http://cs.itd.nrl.navy.mil/work/emane/, 2013. [Online; ac-
cessed 2-April-2013].

[77] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “Core: A real-time
network emulator,” in Military Communications Conference, 2008. MILCOM
2008. IEEE, pp. 1–7, IEEE, 2008.

115

http://cs.itd.nrl.navy.mil/work/emane/

	Introduction
	Background
	Information Centric Networks
	ICN Background
	Alternative ICN designs
	Mobile ICN

	Ad-hoc routing
	MANET routing
	VANET routing
	Disruption tolerant routing

	Network coding

	ICAN: An Information-Centric Ad-Hoc Networking Architecture
	Requirements
	Context awareness foundation
	Network entity representation
	Context and metadata

	System Overview
	Application API
	System architecture
	System service

	Packet Forwarding
	Packet processing: multi-hop forwarding mode
	Packet processing: disruption tolerant mode

	All-broadcast routing
	Basic components of routing plane
	Low cost mobility-resistant flooding
	Geo-assisted opportunistic routing

	Broadcast layer
	Data storm control
	Reliable broadcast


	Exploring The Parameter Space In Urban VANET
	Design Options
	Caching
	Routing
	Problem statement

	Simulation settings
	Mobility and propagation model
	ICN Topology-Assisted Geo-Opportunistic forwarding (ICN-TAGO)
	Web access user behavior model
	Metrics

	Simulation results
	Design options
	The effects of cache size
	Performance gain with varying data object popularity


	Context-Aware Content Discovery
	ICN Content Discovery
	Reactive content discovery
	Proactive content discovery
	Opportunistic content discovery

	Context-Aware Content Discovery
	Proactive Content Discovery: Hierarchical Bloom-Filter Routing (HBFR)
	Bloom Filters
	HBFR Overview
	Advertisement Packet Generation
	BF Propagation: local-view vs. global-view BFs
	Modified SSP Forwarding
	Scalability Analysis
	Simulation

	Reactive Content Discovery: Scalable Opportunistic VANET Content Routing With Encounter Information
	Protocol Design
	LER timer-based forwarding
	Simulation


	Disruption-Tolerant ICAN
	DT-ICAN In Depth
	Data retrieval in DT-ICAN
	Node-Interest propagation
	Bandwidth reservation
	DT-ICAN evaluation

	Network Coded DT-ICAN
	Network Coding
	Network coding security and design options
	Performance And Reliability Analysis
	Hypothesis
	Simulation

	Testbed evaluation
	Emulation


	Conclusion
	References



