Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

J/ψ elliptic and triangular flow in Pb-Pb collisions at √sNN = 5.02 TeV

Abstract

The inclusive J/ψ elliptic (v2) and triangular (v3) flow coefficients measured at forward rapidity (2.5 < y < 4) and the v2 measured at midrapidity (|y| < 0.9) in Pb-Pb collisions at sNN = 5.02 TeV using the ALICE detector at the LHC are reported. The entire Pb-Pb data sample collected during Run 2 is employed, amounting to an integrated luminosity of 750 μb−1 at forward rapidity and 93 μb−1 at midrapidity. The results are obtained using the scalar product method and are reported as a function of transverse momentum pT and collision centrality. At midrapidity, the J/ψ v2 is in agreement with the forward rapidity measurement. The centrality averaged results indicate a positive J/ψ v3 with a significance of more than 5σ at forward rapidity in the pT range 2 < pT< 5 GeV/c. The forward rapidity v2, v3, and v3/v2 results at low and intermediate pT (pT ≲ 8 GeV/c) exhibit a mass hierarchy when compared to pions and D mesons, while converging into a species-independent curve at higher pT. At low and intermediate pT, the results could be interpreted in terms of a later thermalization of charm quarks compared to light quarks, while at high pT, path-length dependent effects seem to dominate. The J/ψ v2 measurements are further compared to a microscopic transport model calculation. Using a simplified extension of the quark scaling approach involving both light and charm quark flow components, it is shown that the D-meson vn measurements can be described based on those for charged pions and J/ψ flow. [Figure not available: see fulltext.]

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View