Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Transcriptional programming of CD4+ TRM differentiation in viral infection balances effector- and memory-associated gene expression

Abstract

After resolution of infection, T cells differentiate into long-lived memory cells that recirculate through secondary lymphoid organs or establish residence in tissues. In contrast to CD8+ tissue-resident memory T cells (TRM), the developmental origins and transcriptional regulation of CD4+ TRM remain largely undefined. Here, we investigated the phenotypic, functional, and transcriptional profiles of CD4+ TRM in the small intestine (SI) responding to acute viral infection, revealing a shared gene expression program and chromatin accessibility profile with circulating TH1 and the progressive acquisition of a mature TRM program. Single-cell RNA sequencing identified heterogeneity among established CD4+ TRM, which were predominantly located in the lamina propria, and revealed a population of cells that coexpressed both effector- and memory-associated genes, including the transcriptional regulators Blimp1, Id2, and Bcl6. TH1-associated Blimp1 and Id2 and TFH-associated Bcl6 were required for early TRM formation and development of a mature TRM population in the SI. These results demonstrate a developmental relationship between TH1 effector cells and the establishment of early TRM, as well as highlighted differences in CD4+ versus CD8+ TRM populations, providing insights into the mechanisms underlying the origins, differentiation, and persistence of CD4+ TRM in response to viral infection.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View