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Chapter 1 


Introduction 


 


1.1     Motivation 


Fractures resulting from minimal trauma result in significant morbidity and 


mortality in the elderly. These fragility fractures are related to underlying osteoporosis. 


Osteoporosis is one of the major problems facing women and elder people of both sexes. 


Each year, an estimated 1.5 million women, about 4 in 10, experience osteoporotic 


fractures in the USA. Up to 20% of women with a hip fracture die within one year 


(National Osteoporosis Foundation, 2003). Additionally, up to 25% of hip fracture 


patients may require long-term nursing home care, and only a third fully regain their pre-


fracture level of independence. Hip fractures bring on the greatest osteoporosis-related 


healthcare expenditure. 


According to the world health organization (WHO), osteoporosis should be 


considered a progressive systemic disease, characterized by microarchitectural 


deterioration of bone, rather than a natural consequence of aging. Osteoporosis is a 


disease of bone in which the bone mineral density (BMD) is reduced, bone 


microarchitecture is disrupted, and the amount and variety of non-collagenous proteins in 


bone is altered. There are several alternatives of medication to treat osteoporosis. 


However, the treatments with different agents not only change the extent of 
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mineralization, but also the morphology of mineral crystals in bone tissue which in turn 


affect the mechanical properties of it. 


In order to have a rigorous computational framework to simulate the behaviors of 


bone tissue, a physics-based and capable material model of bone is required. Although 


mechanical models for bone have been studied for many years, bone itself is usually 


approximated as an isotropic material. Recently, efforts were undertaken to include lower 


hierarchical levels of bone tissue into mechanical models.  At these scales, it is not 


sufficient to consider only the bone mineral density, but also necessarily take into account 


the size, orientation, and local distribution of bone constituents. Moreover, there is a 


hypothesis that toughening mechanisms exist at all characteristic length scales in bone [1]. 


To understand how bone derives its resistance to fracture, there is a fundamental need for 


a more realistic modeling of the bone tissue and its fracture behaviors.  


 


 1.2    Objectives 


One objective of this research is to develop multi-dimensional evolutionary, 


micromechanically motivated anisotropic material models for accurate modeling of bone 


tissue. The micromechanics formulation of multi-phase and multi-scale homogenization 


methodology is employed to derive analytically and estimate the multi-scale effective 


anisotropic elastic moduli of the microstructure of bone tissue (Chapter 3). In the 


following chapter (Chapter 4), the effective material properties of multi-level and multi-


layer bone lamellae are investigated. Fibrillar orientation patterns within the lamellae are 
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considered. In particular, comparison and validation between our micromechanical model 


and experimental data based on the single layer fiber orientation average is presented.  


In Chapter 5, an effective elastic micromechanical damage model for bone tissue 


with evolutionary matrix cracking at the lamellar level is constructed based on Ju and 


Tseng’s [2, 3] micromechanical damage formulation. It is shown clearly that 


microdamage exists in bone and contributes to the degradation of bone’s material 


properties.  In Chapter 6, on the basis of constant-shear model, crack bridging by 


collagen fibrils in toughening cortical bone is investigated systematically with the 


framework of linear-elastic fracture mechanics combined with the previous 


micromechanical model for lamella. In particular, the effect of collagen fiber breakage is 


considered by taking advantage of cumulative probability function. 


A three-dimensional structural model composed of two different unit cells, which 


have distinct mechanical behavior in the vertical direction, with doubly tapered struts for 


human vertebral cancellous bone is proposed Chapter 7. This model could serve as a 


theoretical framework for cancellous bone and provide assistance in understanding the 


connection between structural changes and biomechanical competence. 
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Chapter 2 


Literature Review 


 


2.1     Bone 


Bone is a truly remarkable structural material, with properties that make it ideal 


for its functions of structural and physiological support. It’s relatively light, but it has 


very high tensile and compressive strength, and a good deal of elasticity. Bone deposition 


and resorption typically occur continuously throughout our life. Bone protects our organs, 


and it is the site of attachment of our muscle and tendon. Bone is also the major 


reservoirs of calcium and phosphate necessary for a wide variety of metabolic functions. 


When studying the mechanical properties of bone, it is important to understand the 


mechanical properties of its components phases, and their structural relationships at the 


various levels [3, 4].  


From a macroscopic point of view, bone tissue is non-homogeneous, porous and 


anisotropic. Although porosity can vary continuously from 5 to 95%, most bone tissues 


have either very low or very high porosity. Accordingly, we usually distinguish between 


two types of bone tissue (Figure 2-1). The first type is trabecular or cancellous bone with 


50-95% porosity, usually found in cuboidal bones, flat bones and at the ends of long 


bones. The pores are interconnected and filled with marrow (a tissue composed of blood 


vessels, nerves and various types of cells, whose main function is to produce the basic 
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blood cells), while the bone matrix has the form of plates and struts called trabeculae, 


with a thickness of about 200 µm and a variable arrangement [7].  


The second type is cortical or compact bone with 5-10% porosity and different 


types of pores [8]. Vascular porosity is the largest (50 µm diameter), formed by the 


Haversian canals (aligned with the long axis of the bone) and Volkmanns’s canals 


(transverse canals connecting Haversian canals) with capillaries and nerves. Other 


porosities are associated with lacunae (cavities connected through small canals known as 


canaliculi) and with the space between collagen and hydroxyapatite. Cortical bone 


consists of cylindrical structures known as osteons or Haversian systems (Figure 2-2), 


with a diameter of about 200 µm formed by cylindrical lamellae surrounding the 


Haversian canal. The boundary between the osteon and the surrounding bone is known as 


the cement line. 


Cortical bone is usually found in the shafts of long bones and surrounding the 


trabecular bone forming the external shell of flat bones. This combination of trabecular 


and cortical bone forms a “sandwich-type” structure, well known in engineering for its 


optimal structural properties.  


  


2.1.1  Hierarchical Structure of Bone 


Structurally, bone is a composite material with a complex hierarchical structure. 


Generally, following five structural levels can be distinguished [4]: (1) the 


macrostructural level, which represents the overall bone: trabecular (or cancellous) and 


cortical (or compact) bone; (2) the microstructural level at an observation scale of 10-500 
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µm: osteons, single trabeculae; (3) the sub-microstructural level at an observation scale of 


1-10 µm: lamellae; (4) the nanostructural level (from several nanometers to one micron) 


including fibrillar collagen and crystallites; (5) the sub-nanostructural level involving 


molecular structure of constituent elements, such as collagen, mineral and non-


collagenous proteins (Figure 2-3).  


The basic building block of the bone is the mineralized collagen fibril (Figure 2-


4). It is mainly composed of the collagen fibrils, apatite crystals, and water. The collagen 


fibrils are about 30-200 nm in diameter, of a circular or ellipsoidal cross section, and 


made of triple helix molecules with a diameter of about 1.2 nm and a length of about 300 


nm [9]. They are reinforced with apatite crystals, which have irregular platelet-like 


shapes consisting of impure hydroxyapatite (HA; [ ] [ ] [ ]10 4 36-x 2-y
Ca PO OH CO


x y+
,


6 0x≥ ≥  and 2 0y≥ ≥ ) with an average size of 50x25x2 nm [10-12]. The crystals are 


located both within and outside collagen fibrils, but the exact fibril-crystal interaction is 


not fully understood. However, the collagen fibrils and apatite crystals locally parallel 


each other. 


At the next hierarchical level, mineralized collagen fibrils are present in bundles 


or arrays aligned along their lengths [13]. These bundles are, however, not discrete and 


may fuse with a neighboring bundle. They are arranged in a roughly parallel manner and 


form lamellae (3-7 µm thick) (Figure 2-5 and Figure 2-6). At the next scale, these 


lamellae are stacked at different orientations to form laminated structures. In cortical 


bone, these lamellae wrap in concentric layers (3-10 lamellae) around a central canal to 
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form composite cylinders called osteons or Haversian systems, while in trabecular bone, 


they form crescent-like laminated structures called trabecular pockets.  


At the macrostructural level, the collection of osteons and interstitial bone make 


up cortical bone; the trabecular pockets along with interstitial bone make up struts or 


plates called trabeculae, which, at the next structural scale, form a random porous 


network, with cavities being filled with bone marrow. Although these two types of bone 


(cortical and trabecular) are most easily distinguished by their degree of porosity or 


density, sometimes the structure of bone is fuzzy and it is difficult to tell them apart with 


any clarity. 


This complicated hierarchical composite structure gives bone its unique 


mechanical properties: high stiffness and strength due to stiff crystals, high fracture 


toughness due to relatively compliant collagen, and light weight due to porosities at 


several scales.  


 


2.1.2  Bone Quality 


Although a consentaneous definition of bone quality remains pending [14], the 


concept of bone quality has been associated with the characteristics of healthy bone that 


maintain normal functions and, in particular, prevent the formation of non-traumatic 


fractures. Broadly, the factors most likely to influence the resistance to fracture include: 


(1) the overall composition (i.e., proportion of mineral, collagen, water, and proteins); (2) 


the physical and biochemical characteristics of these components (i.e., size and structure 


of hydroxyapatite crystals, degree of mineralization, nature of the collagen, degree and 
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type of collagen cross-linking); (3) the morphology and architecture (i.e., bone size, 


geometry, porosity, density and microarchitecture); (4) the amount and nature of 


preexisting microdamage (i.e., crack length, density and location). It is also critical to 


combine this information with knowledge of how the bone is loaded during situations 


that produce fractures. In order to understand better why bones fracture, additional 


research is needed to determine which failure mechanism (or combination thereof) 


governs fragility fractures.  


 


2.1.3  Microdamage 


Bone microdamage is generally defined as matrix failure detectable by light 


microscopy. By analogy with other materials, however, we know that damage must begin 


at the molecular level and have manifestations through all levels of the hierarchical 


structure of bone [15]. It is generally accepted that repetitive mechanical loading can lead 


to ultrastructural-level damage. The most prevalent form is discrete microcracks in the 


bone extracellular matrix that are easily visible under brightfield light microscopy [15-


20]. Although younger people are more active and subject to repetitive loading of greater 


magnitude and duration, they typically have a greater physiological capacity to withstand 


the functional demands, and microdamage in bone is repaired by remodeling. 


Nevertheless, with age and/or pathological conditions, these compensatory mechanisms 


become impaired. In consequence, microdamage, which may no longer be repaired as 


efficiently, can play a role in the etiology of osteoporotic and stress fractures [19, 21]. 
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Therefore, there is an inter-relationship between fatigue loading, microdamage 


accumulation, remodeling, bone matrix repair and fracture (Figure 2-7). Remodeling is 


triggered by microdamage accumulation through cell sensory mechanisms and it leads to 


bone matrix repair. However, remodeling can also enhances microdamage accumulation 


or directly leads to fracture upon exceeding a threshold stress. Because there is less bone 


to sustain loading upon resorption induced by remodeling, stresses and strains on the 


remaining bone would increase, generating even more microdamage, which stimulates 


another sequence of remodeling and so on and so forth [15, 22]. As a result, high 


remodeling as well as microdamage accumulation can lead to fracture. Dr. Schaffler 


suggested that in “healthy” bone, there is a balance between expected accumulation of 


damage due to daily loading and its repair [23]. In other words, too much, as well as too 


little, remodeling can accelerate microdamage accumulation and lead to fractures.  


Micro- and ultrastructural features of bone can create stress concentrations that 


initiate crack formation. Reilly [24] observed tensile microdamage to initiate around the 


osteocyte lacunae through examination of specimens to which low levels of strain were 


applied. In such specimens, microcracks were shown to appear either in close proximity 


to the lacuna or at the lacuna boundary, leading to the hypothesis that lacunae serve as 


stress concentrators. Additionally, after applying increasing strains, the number of cracks 


that form outwards from lacunae was observed to increase, indicating damaging effect 


around the osteocyte lacuna. O’Brien et al. [25, 26] found similar results, supporting the 


hypothesis that incremental increase in strain levels increases the crack density, 


consequently suggesting that microcracks accumulated at all stress levels, but that lower 
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stress levels result in an accumulation of microcracks without failure occurring, while 


high stress levels result in a more rapid accumulation of microcracks with failure 


occurring. Besides lacunae, vascular canals can also initiate crack formation [27]. In 


addition to stress concentrations, higher mineralization can increase the probability of 


microcracking. Although heavily mineralized bone is stiffer than less mineralized bone, it 


is more brittle and associated with more microcracks [28].  


Based on the mechanical behavior of composites, there is an expected association 


between microdamage accumulation and mechanical property degradation, in particular 


modulus degradation. However, the specific relationship between these two indicators of 


damage is unclear. It is likely that the testing method plays an important role in 


determining their relationship [18, 29]. For example, strain rate has an effect on the 


amount of damage produced and the degree of modulus degradation [30]. In addition, the 


amount and nature of microdamage may differ between different loading conditions. 


Even within a specified testing method, subtle differences in experimental conditions 


could change damage processes. In order to better identify relations between damage, 


mechanical properties and remodeling, better techniques are required to detect, monitor 


and visualize damage. Besides, a better model is needed to relate compositional changes 


to mechanical and morphological changes.  


 


2.1.4  Toughness 


Bone is a composite material with a complex hierarchical structure which is 


imbued with several mechanisms to resist fracture at multiple scales. These scales relate 







12 
 


to the characteristic structural dimensions in bone, which vary from tropocollagen at the 


nanoscale, mineralized collagen fibrils at the scale of tens of nanometers, collagen 


bundles to form the lamellar structure above micrometer dimensions, to the osteon 


structures, which are several micrometers in size [31]. It is the simultaneous operation of 


toughening mechanisms at these different size scales that provides bone with its 


prominent strength and toughness.  


Some toughening mechanisms contribute to limit the microdamage. For example, 


plasticity ahead of the crack dissipates energy and reduces local stresses. Other 


mechanisms shield the crack tip from the applied external force responsible for crack 


propagation, e.g. crack bridging. The following toughening mechanisms have been 


reported for cortical bone, including sacrificial bonds between fibrils [32], plasticity 


ahead of the crack [33], constrained microcrack [34], crack deflection [35, 36] and crack 


bridging [35]. For individual microcracks, bridging by collagen fibrils might be 


significant since the substantially smaller collagen fibrils would be able to bridge a large 


percentage of the crack length [37] . 


 


2.2     Micromechanics and Representative Volume Element 


Traditional continuum mechanics deals with idealized materials assuming that: (1) 


the elastic properties of a solid at a given point are the same in every direction (isotropy); 


(2) the material properties are the same at all points within the solid (homogeneity). 


These two assumptions render the uniform stress and strain distribution within an 


infinitesimal material element. However, from the microscopic and realistic points of 
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view, an infinitesimal material element has its own complex microstructure. Therefore, 


the stress and strain field within such a material element is not uniform at the microscopic 


level. The major objective of micromechanics is to characterize such infinitesimal 


material element and its neighborhood with a rigorous theoretical framework. In order to 


capture the effects of inhomogeneities, the concept of RVE (Representative Volume 


Element) is introduced. The RVE for a material point of a continuum mass defines a 


material volume which statistically represents the infinitesimal material neighborhood of 


that material point  [38]. In other words, RVE features the mesoscopic length scale which 


is much larger than the size of inhomogeneity, but much smaller than macroscopic length 


scale.  


Based on the concept of RVE, the continuum constitutive relations are evaluated 


in terms of the properties and structure of the constituents within RVE. The methodology 


to estimate the effective material properties is named “homogenization”, which is 


performed by the statistical and volume averaging within an RVE. Mathematically, this 


type of procedure is related to the ensemble-volume averaging process, and leads to the 


overall governing constitutive equations.  We will employ this homogenization method 


rigorously in the following chapters and more detailed formulations will be addressed. 


 


2.2.1  Eshelby’s Equivalence Principle 


Based on micromechanics, when a material contains inhomogeneities of different 


material properties such as inclusions, voids, or cracks, etc., it is subjected to an internal 


stress (eigenstress) field even if it is free from external load. Such stress field is caused by 
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the eigenstrain inside the inhomogeneities due to the misfit and phase transformation. 


Eshelby [39] pointed out that that the stress perturbation in an applied stress due to the 


presence of an inhomogeneity can be simulated by an eigenstress caused by an inclusion 


when the eigenstrain is chosen properly. 


Let us now consider an infinitely extended matrix domain D (stiffness 0C ) with 


an inclusion (inhomogeneity) domain  Ω (stiffness 1C ). Suppose that the applied stress at 


infinity is 0σ  and the corresponding strain is 0ε . Furthermore, the perturbed stress field 


and strain field are denoted by σ ′  and ε ′ , respectively. Therefore, the Hooke’s law takes 


the form 


( )0 0
0 :σ σ ε ε′ ′+ = +C   in   Ω   (2.1) 


( )0 0
1 :σ σ ε ε′ ′+ = +C   in   D-Ω      (2.2) 


Eshelby’s equivalent eigenstrain principle is to replace the inhomogeneity with a 


homogenized inclusion, with which an eigenstrain field is prescribed, such that the 


homogenized field is mechanically equivalent to the original inhomogeneous field. By 


introducing an eigenstrain *ε  within the inclusion domain Ω and applying the Eshelby’s 


equivalence principle, the Hooke’s law yields  


( )0 0 *
0 :σ σ ε ε ε′ ′+ = + −C   in   Ω   (2.3) 


  ( )0 0
0 :σ σ ε ε′ ′+ = +C   in   D-Ω    (2.4) 


Apparently, the necessary and sufficient condition for the equivalency of the 


stresses and strains in equations (2.3) and (2.4) is 
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   ( ) ( )0 0 *
1 0: :ε ε ε ε ε′ ′+ = + −C C    (2.5) 


In the case of uniform stress 0σ  at the far field, the eigenstrain *ε  is also uniform within 


inclusion domain Ω. 


 


2.2.2  The Ensemble-Averaging Procedure  


Upon the solution of the local stress/strain field, the ensemble averaging 


procedure (homogenization) is typically performed within the aforementioned 


representative volume element (RVE) to obtain the overall effective constitutive 


equations and properties of the heterogeneous composites. For example , the volume-


averaged stress and strain tensor are defined as [40] 


  
1


1 1( ) ( ) ( )
m r


n


rV V V


x dx x dx x dx
V V


σ σ σ σ
=


 
= = + 


  
∑∫ ∫ ∫   (2.6) 


  
1


1 1( ) ( ) ( )
m r


n


rV V V


x dx x dx x dx
V V


ε ε ε ε
=


 
= = + 


  
∑∫ ∫ ∫    (2.7) 


where V  is the volume of an RVE, mV  is the volume of the matrix, rV  is the volume of 


the r th-phase inhomogeneities, and n  denotes the number of inclusion phases of 


different material properties (excluding the matrix). Combining the Eshelby’s 


equivalence principle and the ensemble-averaging procedure, the effective constitutive 


relations as well as the overall elastic behavior of the composite can be derived.   
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Figure 2-1. Bone section showing cortical and trabecular bone [2]. 
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Figure 2-2. Microscopic structure of cortical bone. (a) 3D sketch of cortical bone, 


(b) cut of a Haversian system, (c) photomicrograph of a Haversian system [1].  
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Figure 2-3. Hierarchical structural level of bone: (a) trabecular and cortical bone; (b) 


osteons and single trabeculae; (c) lamellae; (d) mineralized collagen fibrils; (e) 


collagen, mineral and non-collagenous proteins. [4] 


Figure 2-4. TEM micrograph of a mineralized collagen fibril from turkey 


tendon [6]. 
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Figure 2-5. Scanning electron microscopy image of trabecular bone at a single 


lamella level. Fibrils are aligned in the preferential direction, forming bundles. A 


void in the center is called lacunae [5]. 


Figure 2-6. An isolated and flattened lamellar specimen from an alternate osteon 


(Dr. M.-G. Ascenzi). 
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Figure 2-7. Schematic inter-relationship between microdamage 


accumulation, remodeling, bone matrix repair and fracture 
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Chapter 3 


Multi-Scale Effective Elastic Micromechanical Model for Bone 


Tissues 


 


3.1     Introduction 


In this chapter, we try to develop a static multi-scale micromechanical model of 


bone tissue. The estimation of the effective stiffness of bone material is based on four 


homogenization steps (Figure 3-1). The first homogenization step refers to an 


observation scale of several hundred nanometers, where cross-linked collagen molecules 


form a contiguous matrix and apatite crystals nucleate and grow within the gap regions 


between adjacent collagen molecules, building up the mineralized collagen fibrils. At the 


ultrastructural scale, mineralized collagen fibrils are present in bundles and embedded as 


inclusions into the extrafibrillar mineral foam which is composed of hydroxyapatite, 


ultrastructural water and non-collageneous proteins. The last homogenization step refers 


to extravascular bone material at an observation scale of 100 µm, where osteocyte 


lacunae are embedded in extracellular bone matrix.  


 


3.2     Mineralized Collagen Fibrils  


The structural organization of the mineralized collagen fibril proposed by Fratzl et 


al. [4, 9] is adopted. In this interpretation, mineral crystals are observed to be randomly 


distributed in the plane perpendicular to the longitudinal axis of the mineralized collagen 
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fibrils. In our model, an individual agglomeration of apatite crystals is approximated as a 


prolate spheroid whose major axe is oriented along the 1x  direction. If we assume that an 


individual agglomeration of apatite crystals fills the gap region during the mineralization 


process, the final aspect ratio of mineral crystals can be estimated reasonably from the 


length and the equatorial width of the gap region. The length of the gap region is taken as 


40 nm following the Hodge-Petruska scheme [11] (Figure 3-2). While the available 


equatorial width of the gauge region is 1.5 nm in an unmineralized collagen fibril, x-ray 


diffraction studies have showed that mineral crystals grow wider than the available space, 


up to 3 nm, compressing the collagenous matrix in which they are embedded [4] (Figure 


3-3). Therefore, the aspect ratio of a mineral crystal that is fully occupying the gap region 


is about 40 / 3 .   


 


3.2.1   Phase Stiffness Values 


In order to estimate the effective stiffness of the mineralized collagen fibril, fibC , 


the material properties of apatite crystals, collagen and ultrastructural water (with non-


collagenous proteions) phases are required. It is almost impossible to obtain these values 


from the macroscopic tests of any collagenous tissue since there is a significant level of 


porosity which underestimates the elastic moduli. In addition, the involvement of 


microstructural units and interfaces in the deformation of bone tissue (such as lamellar 


interfaces and cement lines) also affects the measured material properties.  


Keeping these constraints in mind, the elastic constants of apatite crystals are 


chosen from the study by Gilmore and Katz [12]. In their work, the isotropic elastic 
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contents of crystalline apatite solids are determined from measurements of elastic wave 


velocities through enamel powders under pressure. The crystallites of enamel are in the 


form of carbonated hydroxyapatite which is similar to crystallites of bone [13]. Therefore, 


the bulk modulus and shear modulus of apatite crystals are selected as 80 GPaHAk =  and 


45 GPaHAµ = .  


The elastic modulus of collagen molecule is taken as 2.9 GPacolE = from the 


study by Sasaki and Odajima [14]. In their work, X-ray diffractometry was performed on 


bovine Achilles tendon, and the stress-strain curve of the collagen molecule was 


constructed by assuming a molecular packing pattern in the cross-section of the specimen 


and adopting geometrical calculations. The Poisson’s ratio of a collagen molecule is not 


available in the literature; therefore, a typical value of 0.3 is assumed for the 


computations. 


The bulk modulus and shear modulus of ultrastructural water (with non-


collagenous proteins) are taken as the standard values of water, 2.3uwk =  GPa and 


0uwµ =  GPa. In case of dry tissues, 0uw =C  is adopted. 


 


3.2.2   The Micromechanical Model 


Within the framework of micromechanics, the effective stiffness tensor of the 


mineralized collagen fibril fibC  can be expressed in terms of the stiffness tensor of the 


collagenous matrix colC , the stiffness tensor of the apatite crystals HAC , the stiffness 
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tensor of ultrastructural water (with non-collagenous proteins) uwC , the corresponding 


volume fractions ,HA fibφ  and ,uw fibφ , and the Eshelby’s tensor S  (for spheroid and sphere) 


(cf. Appendix I) [15]. It reads as  


 ( ) ( )
12 2


1 1


1 1
fib col a a a r r r r


a r
Iφ φ


−
− −


= =


  = + + − +     
∑ ∑C C I A S S A S      (3.1) 


where 


 1 ,HA fibφ φ= ,   ( ) 1
1 HA col col


−= −A C C C         (3.2) 


 2 ,uw fibφ φ= ,   ( ) 1
2 uw col col


−= −A C C C        (3.3) 


The model generates a transversely isotropic stiffness tensor for the mineralized 


collagen fibril. Elastic constants increase with increasing volume fraction of apatite 


crystals. However, the elastic modulus along the longer axis of the mineralized collagen 


fibril 1111C  increases at a much greater rate than the other moduli (Figure 3-4). 1111C  at a 


volume fraction of 0.6 is about 12 times greater than the modulus of the unmineralized 


fibril. On the other hand, the transverse elastic constant 2222C  ( 3333C= ) and the two shear 


moduli increase only threefold by a mineral volume fraction of 0.6. These observations 


indicate that the reinforcement of collagenous matrix with prolate spheroid shaped apatite 


crystals increases the stiffness along the longer axis of the apatite crystals preferentially. 


The Poisson’s ratio 21ν  ( 31ν= ) decreases with increasing mineral volume fraction, 


indicating that reinforcement with apatite crystals constrains the transverse lateral strains 


within 2 3x x−  plane when the fibrils are stressed along the longitudinal axis. The strain 
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along the longitudinal axis in response to stress applied along the transverse plane (i.e., 


12 13ν ν= )  exhibits a small decline with increasing mineral volume fraction. 


The value of an elastic constant at the aspect ratio of 40/3 is taken as the reference 


and the percent variation of the elastic constant with respect to this value is plotted as a 


function of aspect ratio at a mineral volume fraction of 0.42 (Figure 3-5). The aspect 


ratio covers a range of 5 to 25, and the greater ratio represents a more needle-like apatite 


crystal shape. 1E  and 21ν  ( 31ν= ) display notable variations with different aspect ratio 


whereas the change in the remaining elastic constants are within 5%. At a fixed mineral 


volume fraction, the stiffness of the mineralized collagen fibril along its longitudinal axis 


increases when the crystal shape becomes more needle-like.  


 


3.3     Extrafibrillar Mineral Foam 


The elastic properties of the extrafibrillar mineral foam are estimated from those 


of hydroxyapatite, ultrastructural water and non-collagenous proteins. The hydroxyapatite 


crystals in the foam are considerable disordered and establish a continuum [16-20]. 


Therefore, within the framework of micromechanics, the effective stiffness tensor of the 


extrafibrillar mineral foam efC  can be expressed in terms of the stiffness tensor of the 


apatite crystals HAC , the stiffness tensor of ultrastructural water (with non-collagenous 


proteins) uwC , the volume fraction of the inclusion uwφ , and the Eshelby’s tensor S  (for 


sphere) (cf. Appendix I) [21]. 
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The same as the model of mineralized collagen fibril, the bulk modulus and shear 


modulus of ultrastructural water (with non-collagenous proteins) are taken as the standard 


values of water, 2.3 GPauwk =  and 0 GPauwµ = . In case of dry tissues, 0uw =C  is 


adopted. Accordingly,  


 ( )( ) 1
1ef HA uw uwφ φ


− = + −
 


C C I A+ S          (3.4) 


where 


  ( ) 1
uw HA HA


−= −A C C C        (3.5) 


The stiffness tensor efC  is isotropic, which is consistent with the study by Lees et al. [22]. 


 


3.4     Extracellular Bone Material or Ultrastructure 


Within a RVE of bone ultrastructure with characteristic length 3-10 µm, 


spheroidal fibrillar inclusions are embedded in a contiguous matrix built up by the 


mineral foam material with different orientations. Using a Ju-Chen first order 


micromechanical approximation [15, 21] and performing the orientational averaging 


procedures (cf. Appendix III) [23], the effective stiffness tensor of ultrastructure ultraC  


can be expressed in terms of the stiffness tensor of the mineralized collagen fibrils fibC , 


the stiffness tensor of the extrafibrillar mineral foam efC , the volume fraction of the 


inclusion (mineralized collagen fibrils) fibφ , and the Eshelby’s tensor S  (for spheroid) 


(cf. Appendix I) [15]. Therefore, we have 


 ( )1
ultra ef fibφ −= +C C I Ω Λ           (3.6) 
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where the fourth-rank tensor Λ  and Ω  can be derived from Eqs. (3.39) and (3.40) with 


the fibril orientation pattern, and  


  ( ) 1


fib ef ef


−
= −A C C C            (3.7) 


 


3.5     Extravascular Bone Material 


Within a RVE of extravascular bone material with characteristic length 100 µm, 


spheroid voids (osteocyte lacunae) (Figure 3-6) which are typically 2 µm in diameter and 


6 µm in long axis [24] are embedded in a contiguous matrix built up by the extracellular 


bone material obtained from the previous homogenization step. Adopting a Ju-Chen first 


order micromechanical approximation [15, 21], the effective stiffness tensor of 


extravascular bone material exC  can be expressed in terms of the stiffness tensor of the 


lacunae lacC  which is assumed 0 here, the stiffness tensor of the ultrastructure ultraC , the 


volume fraction of the void lacφ , and the Eshelby’s tensor S  (for spheroid) (cf. 


Appendix II) [15]; resulting in 


 ( )( ) 1
1ex ultra lac lacφ φ


− = + −
 


C C I A+ S           (3.8) 


where 


  ( ) 1
lac ultra ultra


−= −A C C C            (3.9) 
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3.6     Results and Discussions 


One important assumption of the model of mineralized collagen fibrils is that 


collagen molecules establish a continuum in which apatite crystals are embedded. This 


assumption requires the knowledge of how individual collagen molecules are linked and 


how the intermolecular space is occupied. There is an abundance of covalent crosslinks, 


enzymatic as well as nonenzymatic, which links the collagen network [25, 26]. The 


continuum of the collagen molecules is further facilitated by the mineralization process 


which reduces the lateral spacing between collagen molecules and brings them closer [27, 


28]. In addition, the intermolecular spaces are filled with water molecules which are 


bound to collagen molecules via permanent dipole bonds [29]. Therefore, these bound 


water molecules could be considered as the extensions of collagen molecules to the 


intermolecular spaces. In our model, the contributions of some intermolecular voids are 


considered as an extra ultrastructural water (with non-collagenous proteins) phase, 


resulting in the more accurate effective stiffness.  


It is not a simple issue to predict the volume fraction of apatite crystals in 


mineralized collagen fibrils. The difficulty arises from obtaining samples at the fibrillar 


level, and, unlike weight fraction, there is no straightforward way to measure volume 


fraction experimentally. Therefore, the model depends on the predictions of earlier 


studies for the volume fraction of apatite crystals [9, 27, 30]. These predictions are based 


on the fact that the lateral spacing of collagen molecules reduces when apatite crystals 


replace water molecules during the course of mineralization. Using this lateral reduction 


in lateral spacing of mineralized fibers, the upper limit for the mineral volume fraction of 
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collagen fibrils is estimated at 0.48, the lower limit is at 0.15, and the mineral volume 


fraction of fully mineralized bone is predicted as 0.42 [9].  


There is no published experimental data on the modulus of individual mineralized 


collagen fibrils due to their small size. Existing data are obtained either from mechanical 


tests of macroscopic specimens or from nanoindentation test. It would be more 


appropriate to compare our prediction with the experimental data from nanoindentation 


test [2, 7, 10] . The prediction of the model is in agreement with the experimental data 


(Figure 3-7). The model predicts that the lateral shrinkage of collagen fibrils when 


stressed longitudinally decreased with increasing mineral content. The Poisson’s ratio 21ν


( 31ν= ) at a fully mineralized range converges to 0.05 (Figure 3-4). This reduction in 


lateral deformation may have important implications from the structural stability point of 


view. Limited lateral shrinkage under longitudinal stress would constrain the mobility of 


the mineralized collagen fibril and improve the fibril’s attachment to its environment 


under tension. This limited mobility may in turn render additional stiffness to bone tissue. 


The experimental validation of the homogenization scheme for the extrafibrillar 


mineral foam requires determination of the ultrastructural water volume fraction uwφ  from 


tissue experiments. Since 1uw HAφ φ= −  and HAφ  can be determined from weighting 


experiments of wet, dried, and dried demineralized tissues, through the following 


equation [27] 


    w
HA HA


HA


WF ρφ
ρ


= ×          (3.10) 
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Table 3-1. Composition and stiffness of the extrafibrillar mineral foam 


a Lees et al. [3]     b Cuy et al. [8] 


 


where HAWF  is the weight fraction of hydroxyapatite in the wet tissue, wρ  is the mass 


density of the wet tissue, and 33.00 g/cmHAρ =  [27] is the mass density of hydroxyapatite 


(Table 3-1). The comparison of elastic constant 1111C  and the Poisson ratio are shown in 


Figure 3-8. 


 


 


 


In order to demonstrate the validity of the present model at the ultrastructural 


scale and extravascular level, the experimental data are obtained from the study by 


Hellmich et al. [1]  and reorganized in Table 3-2 and Table 3-3 (cf Appendix IV). The 


volume fraction of the osteocyte lacunae lacφ  is selected as 0.025 based on the confocol 


images [5]. The comparisons between the model and the data are then shown in Figure 3-


9 and Figure 3-10. Generally, our numerical results are close to the experimental data. 


 


 


  


 


 


Tissue ( )3g/cmwρ  HAWF  HAφ Eq.(3.10) ( )exp
1111 GPaC  


enamel 2.90a 0.96b 0.9280 125.0a 


enamel 2.90a 0.96b 0.9280 115.0a 
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Table 3-2. Experimental data [1] 
 


Tissue State  exp
1111C (GPa)  fibφ   HAφ   uwφ  


cow tibia wet 31.65 0.50 0.27 0.36 


cow tibia wet 31.50 0.50 0.27 0.37 


cow tibia wet 29.32 0.54 0.26 0.40 


cow tibia wet 30.10 0.52 0.26 0.40 


cow tibia wet 30.42 0.51 0.26 0.40 


cow tibia wet 30.86 0.52 0.27 0.37 


cow tibia wet 31.61 0.49 0.28 0.35 


cow tibia wet 31.96 0.51 0.27 0.35 


cow tibia wet 35.99 0.50 0.27 0.36 


deer antler wet 16.51 0.62 0.20 0.55 


deer antler wet 17.17 0.64 0.21 0.54 


cow tibia dry 41.96 0.60 0.31 0.20 


deer antler dry 24.22 0.74 0.23 0.36 


deer antler dry 28.26 0.77 0.25 0.30 
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Table 3-3. Experimental data [1]  


  


Tissue State  exp
3333C (GPa)  fibφ   HAφ   uwφ  


cow tibia wet 20.40 0.49 0.27 0.36 


cow tibia wet 20.10 0.49 0.26 0.39 


cow tibia wet 19.70 0.50 0.25 0.41 


cow tibia wet 20.10 0.49 0.26 0.39 


cow tibia wet 21.80 0.54 0.27 0.37 


cow tibia wet 21.80 0.48 0.27 0.37 


cow tibia wet 22.80 0.51 0.27 0.37 


deer antler wet 10.10 0.64 0.21 0.54 


deer antler wet 10.00 0.64 0.21 0.53 


cow tibia dry 25.50 0.60 0.32 0.18 


deer antler dry 13.90 0.75 0.25 0.31 


deer antler dry 15.40 0.76 0.27 0.25 


rabbit femur      
BAPN wet 22.70 0.45 0.26 0.39 


BAPN wet 21.80 0.47 0.26 0.38 


BAPN wet 21.70 0.47 0.26 0.38 


BAPN wet 21.50 0.47 0.26 0.40 


BAPN wet 19.20 0.48 0.25 0.42 


BAPN wet 18.00 0.46 0.24 0.45 


fluor wet 20.50 0.39 0.26 0.40 


fluor wet 21.20 0.38 0.27 0.39 


fluor wet 14.00 0.37 0.23 0.50 


fluor wet 10.90 0.32 0.17 0.63 
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Figure 3-1. Micromechanical representation of bone tissue based on four 
homogenization steps: (a) Extrafibrillar mineral foam. (b) Mineralized collagen fibrils. (c) 
Ultrastructure. (d) Extravascular bone material. 
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Figure 3-2. Schematic diagram of early surface and gap region mineralization in a 
collagen fibril [6]. 


Figure 3-3. Model for the calcification process: Mineral crystals increase in thickness 
until they reach the maximum thickness of 3 nm [4]. 
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Figure 3-4. Change in the (a) elastic moduli and (b) Poisson’s ratios of mineralized 
collagen fibrils with increasing volume fraction of apatite crystals. 
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Figure 3-5. Percent change in the elastic constants of mineralized collagen fibrils with 
increasing aspect ratio of apatite crystals at a volume fraction of 0.42. The percent 
change is calculated with respect to the elastic constants at the aspect ratio of 40/3. 


Figure 3-6. Confocol images of osteocyte lacunae and canaliculae exiting lacunae for 
extinct lamellar specimen. [5]  
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Figure 3-7. The comparison of the predicted elastic modulus 1E  (along the 
longitudinal axis) of the mineralized collagen fibrils and those experimentally 
measured via nanoindentation. 


1. human tibial cortical bone, 28.9 GPa ± 1.8 GPa [2] 
2. human tibial cortical bone osteons, 24.6 GPa ± 1.3 GPa [7] 
3. human tibial cortical bone interstitial lamellae, 28.2 GPa ± 1.1 GPa [7] 
4. tracular bone, 22.5 ± 3.1 GPa [10]. 
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Figure 3-8. (a) Axial stiffness 1111C  and (b) Poisson’s ratio of the 
extrafibrillar mineral foam as a function of ultrastructural water 
volume fraction uwφ . 
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Figure 3-9. Comparison between stiffness predictions of micromechanical model and 
experimental stiffness values (at ultrastructural scale): (a) axial stiffness 1111C  (b) 
radial stiffness 3333C , see also Table 3-2 and Table 3-3. 


0 5 10 15 20 25 30 35 40
0


5


10


15


20


25


30


35


40


Elastic constant C3333 (GPa) - experiment


E
la


st
ic


 c
on


st
an


t C
33


33
 (G


P
a)


 - 
m


od
al


0 10 20 30 40 50 60
0


10


20


30


40


50


60


Elastic constant C1111 (GPa) - experiment


E
la


st
ic


 c
on


st
an


t C
11


11
 (G


P
a)


 - 
m


od
al


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 
 
  


(a) 


(b) 







45 


Figure 3-10. Comparison between stiffness predictions of micromechanical model 
and experimental stiffness values (at extravascular level): (a) axial stiffness 1111C  (b) 
radial stiffness 3333C , see also Table 3-2 and Table 3-3. 
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3.7     Appendix I: The Interior-Point Eshelby’s Tensor 


For a spheroidal inclusion aligned with the 1x -axis, the components of (interior 


point) Eshelby’s tensor can be explicitly described as 


  
( )


( ) ( ) ( ) ( ) ( )1 2


0


1 0 0
4 1ijkl IK ij kl IJ ik jl il jkS S Sδ δ δ δ δ δ


ν
 = + + −


     (3.11) 


where 


  ( ) ( ) ( )
(1)
11 0 02 2


2 40 4 0 4
1 3 1


S gν ν
α α


 = + + + − − 
      (3.12) 


  ( ) ( ) ( ) ( )
2 2


1(1)
12 13 0 02 2


2 1 20 0 4 0 4
1 1


S S gα αν ν
α α


 +
= = − + − − − 


      (3.13) 


  ( ) ( ) ( ) ( )
2 2


1(1)
21 31 0 2 2


2 1 20 0 2 0
1 1


S S gα αν
α α


 +
= = − − − − − 


      (3.14) 


  ( ) ( ) ( ) ( ) ( ) ( )


( ) ( ) ( )
2 2


1 1 1(1)
22 23 32 33 0 2 2


4 10 0 0 2 0
4 1 2 1


S S S S gα αν
α α


 −
= = = = − + + 


− −  
  (3.15) 


  ( ) ( ) ( ) ( )
2 2


2
11 0 02 2


4 2 12 80 4 0 4
1 3 1


S gα αν ν
α α


 − −
= − + − + − − 


     (3.16) 


  ( ) ( ) ( ) ( ) ( ) ( ) ( )
2


2 2 2(2)
12 13 21 31 0 02 2


2 20 0 0 0 2
1 1


S S S S gαν ν
α α


 +
= = = = − − − − − − 


  (3.17)  


  ( ) ( ) ( ) ( ) ( ) ( )


( ) ( ) ( )
2 2


2 2 2(2)
22 23 32 33 0 2 2


4 70 0 0 2 0
4 1 2 1


S S S S gα αν
α α


 −
= = = = − + 


− −  
   (3.18) 


where ( )0g  is given by 
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  ( )
( )


( )


( )
( )


1 21 2
3 22


1 22 1
3 22


cosh 1      for  1
1


0
1 cos        for  1


1


g


α α α α α
α


α α α α α
α


−


−


  − − >   −= 
  − − <   −


     (3.19) 


For the special case of a spherical inclusion, the (interior point) Eshelby’s tensor 


reduces to  


 
( ) ( ) ( )0 0


0 0


5 1 4 5
15 1 15 1ijkl ij kl ik jl il jkS ν νδ δ δ δ δ δ


ν ν
− −


= + +
− −


      (3.20) 
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3.8  Appendix II: The Interior-Point Eshelby’s Tensor for Inclusions 


in a Transversely Isotropic Matrix 


 For a spheroidal inclusion in a transversely isotropic matrix with stiffness tensor 


0C , the Eshelby’s tensor S  can be obtained from the fourth-order P tensor which 


characterizes the interaction between the inclusion and the matrix. 


  
( )


( )( )


2
ik


ijkl
j l


ij kl


G dV
P


x x
Ω


 ′ ′∂ −
 = −


∂ ∂ 
 


∫ x x
        (3.21) 


In Eq. (3.21), ( ) ( )ij kl  represents symmetry with respect to ( )ij  and ( )kl . ( )ikG ′−x x  is 


the Green’s function which gives the displacement at point x  resulting from a unit force 


at point ′x .  


If the long axis of the spheroidal inclusion is perpendicular to the plane of 


isotropy of the matrix and the aspect ratio of the inclusion is defined as  


 1a
a


α = , 1a a>         (3.22) 


where 1a  and a  are the semi-axes of the spheroids. The non-zero components of the 


symmetric P tensor can be expressed in terms of two elementary integrals shown in Eq. 


(3.28) and Eq. (3.29) as followed [31] 


  ( ) ( )0 0 0 0 0
1111 1 2323 3333 2323 2323 3333 2


3 1, 2 , 1, 1
16 16


P I C C C C C I= − − + −     (3.23) 


  ( ) ( )0 0 0 0 0
1122 1 2323 3333 2323 2323 3333 2


1 1, 2 , 1, 1
16 16


P I C C C C C I= − − − −     (3.24) 
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  ( )0 0 0 0
1133 1 1133 2323 1133 2323


1 0, ,
4


P I C C C C= − − +         (3.25) 


  ( )0 0 0
3333 1 1111 2323 1111


1 0, ,
2


P I C C C= −          (3.26) 


  ( )( ) ( )0 0 0 0 0 0
1313 1 1111 1111 1133 1111 3333 1133 2


1 1, 2 , 2 0, 1
16 16


P I C C C C C C I= − + + + − −    (3.27) 


The elementary integral 1I  and 2I  are 


( )
( )


( )
( ) ( )


2 4
1


1 3 20 0 2 2 2 2 2 21 2 2
3333 2323 1 1 2 2


11, ,
1 11 1


m n
I l m n d


C C
ξ ξα ξ


γ γ ξ γ γ ξα ξ−


+ +
=


   + − + − − −     
∫  


(3.28) 


 ( )
( )


( )
( )


2
1


2 3 2 0 0 0 21 2 2
1212 2323 1212


1
,


1 1


m
I l m d


C C C


ξα ξ
ξα ξ−


+
=


 + − − −   
∫        (3.29) 


where 2
1γ  and 2


2γ  are the roots of 


  ( )0 0 2 0 0 0 0 0 2 0 0
3333 2323 1111 3333 1133 2323 1133 1111 23232 0C C x C C C C C x C C− − − + =      (3.30) 


The Eshelby’s tensor then can be calculated from the following equation 


  0= S P C              (3.31) 
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Figure 3-11. (a) The sketch of a spheroid, and (b) transformation between local 
coordinate system ix′  and global coordinate system jx  


3.9 Appendix III: Effective Stiffness of Composites with Oriented 


Particles 


  Let us start by considering a two-phase composite consisting of a linearly elastic 


isotropic matrix (phase 0, with the stiffness 0C ) and linearly elastic spheroidal particles 


(phase 1, with the stiffness  1C ). The particles are randomly located in the matrix. The 


aspect ratio of the spheroidal particles is defined as 1 /a aα =  where 1a  and a  are the 


semi-axes of the spheroids [Figure 3-11 (a)]. It is assumed that the two phases are 


perfectly bonded at the interfaces. 
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The transformation between local coordinates of particles and global coordinates 


of composites is demonstrated first. As shown in Figure 3-11 (b), the local axes of a 


spheroidal inclusion are denoted by the primed coordinate system ( 1x′ , 2x′ , 3x′ ) with  axis 


1x′  being the symmetric axis of a spheroid. The global axes are represented by the 


unprimed coordinate system ( 1x , 2x , 3x ). Each component of the coordinate 


transformation matrix [ ]ijQ  is simply the cosine between the thi  primed and thj  


unprimed axes. Thus, we have 


   { } [ ]{ }i ij jx Q x′ =          (3.32) 


where the transformation matrix has the following form 


   
cos sin cos sin sin


[ ] sin cos cos cos sin
0 sin cos


ijQ
θ θ γ θ γ
θ θ γ θ γ


γ γ


 
 = − 


−  


      (3.33) 


with θ  ( / 2 / 2π θ π− ≤ ≤ ) denoting the angle between 1x  and 1x′  and γ  ( 0 γ π≤ ≤ ) 


representing the angle between 3x  and 3x′ . Therefore, any second-rank tensor, e.g., the 


stress tensor, can be transformed between the global and the local as 


   ij ik jl klQ Qσ σ′ =           (3.34) 


or 


   ij ki lj klQ Qσ σ ′=          (3.35) 


To obtain effective constitutive equations of random heterogeneous composites, 


one typically performs the ensemble-volume and orientational averaging procedures 


(homogenizations) within a mesoscopic representative volume element (RVE). In 
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particular, Ju and Chen [15] performed the ensemble-volume homogenization and 


derived the governing stress-strain equations for particle-reinforced composites under the 


applied far-field stress 0σ . In the case of the first-order approximation, the three 


governing constitutive equations take the form: 


   


*
0


0 *


* 1 0


: ( )


:
( ) :


σ ε φε


ε ε φ ε


ε ε−


= −


= +


= − +


C
S


S A
         (3.36) 


where σ , ε , and *ε  are the ensemble-volume averaged stress, strain, and eigenstrain 


tensors of composites, respectively. The corresponding far-field strain is 0 1 0
0 :ε σ−= C  


and the elastic mismatch tensor reads ( ) 1
1 0 0


−= − A C C C . The effective stiffness tensor 


of aligned particle-reinforced composites can be easily obtained from the foregoing three 


governing equations.  


When all of the reinforcements of composites are randomly located and randomly 


oriented in the three-dimensional (3D) space, the orientation-averaging process is further 


applied to Eq. (3.36). For example, the orientational average of σ  is defined as  


   ( )
2 /2


0 0
, sinP d d


π π
σ σ θ γ θ θ γ∫ ∫         (3.37) 


where the range of two angle θ  and γ  are 0 / 2θ π≤ ≤  and  0 2γ π≤ ≤ , respectively. 


Further, the function ( ),P θ γ  represents the probability density function of the 


orientation. The three governing equations of composites together with the random 


orientation of particles can be formulated as 
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( )*
0


*


* 0


:


:


:


σ ε φ ε


ε ε


ε ε


= −


=


= −


C


Λ


Ω


             (3.38) 


where the fourth-rank tensor Λ  and Ω  read 


  ( ) ( )
12 2


0 0
, sinijkl ijkl mi nj mnpq pqst pqst sk tlI Q Q S S A Q Q P d d


π π
φ θ γ θ θ γ


−


Λ = − +∫ ∫   (3.39) 


and 


  ( ) ( )
12 2


0 0
, sinijkl mi nj mnpq mnpq pk qlQ Q S A Q Q P d d


π π
θ γ θ θ γ


−


Ω = +∫ ∫     (3.40) 


It is noted that I  signifies the fourth-rank identity tensor. Emanating from Eq. (3.38), the 


effective elastic stiffness tensor for randomly oriented particle-reinforced composites can 


be derived as 


   ( )1
0 φ −= + C C I Ω Λ         (3.41) 


 


 


 


 


 


 


 


 


 


 







54 


3.10 Appendix IV: Determination of Tissue-Specific Volume Fractions 


The validation of our multi-scale homogenization model requires determination of 


the volume fraction within the considered representative volume elements. 


At the extravascular level, the volume fraction of the osteocyte lacunae, lacφ , can 


be obtained from the polarized light microscopy [32] through 


 area of lacunae in field of view
total area of field of viewlacφ =          (3.42) 


The value of 0.025 is selected here based on the confocol images [5], which is consistent 


with the typical value for any kind of mammalian bone [33]. 


 The volume fraction of apatite crystal, HAφ , and collagen, colφ , can be determined 


from weighting experiments of wet, dried and dried demineralized tissues [27, 34, 35] 


through the following equations. 


  For wet tissues, 


  w
HA HA


HA


WF ρφ
ρ


= ⋅           (3.43) 


  0.9 w
col org


col


WF ρφ
ρ


= ⋅ ⋅           (3.44) 


where HAWF   and orgWF  are the weight fractions of apatite crystal and organic matter of 


the tissue specimen, wρ  is the mass density of the wet tissue, 33.00 g cmHAρ =  and 


31.41 g cmcolρ = [27]  are the mass densities of apatite crystal and collagen. Eq. (3.44) 


implies that, in mineralized tissues, about 90% per mass of the organic matter is collagen 


[27, 36].  
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 For dry tissues, 


  dHA
HA


HA org HA


WF
WF WF


ρφ
ρ


= ⋅
+


         (3.45) 


  0.9 org d
col


HA org col


WF
WF WF


ρφ
ρ


= ⋅ ⋅
+


        (3.46) 


where dρ  is the mass density of the dried tissue. 


 The volume fraction of the fibrils in the ultrastructure can be determined based on 


the generalized packing model [27, 30, 37] through the following equations, 


  fib
fib col


col


v
v


φ φ= ⋅ , 5fib wv bd D=          (3.47) 


where 3335.6 nmcolv =  is the volume of a single collagen molecule [27], 1.5 nmb ≈ is an 


average length of collagen crosslink for mineralized tissues, 67 nmD ≈ is the axial 


period of staggered assemblies of type I collagen, and wd  is the tissue-specific neutron 


diffraction spacing between collagen molecules depending on the mineralization and the 


hydration state of the tissue specimen. 


 The volume fraction of collagen molecule within the fibrils then can be obtained 


as 


  ,
col


col fib
fib


φφ
φ


=            (3.48) 


Here we are going to introduce an apatite crystal distribution parameter efα , which 


determines the relative amount of apatite crystal in the extrafibrillar space. The volume 


fraction of apatite crystal in the fibrillar and the extrafibrillar space are then given by 
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( )


,


1HA ef
HA fib


fib


φ α
φ


φ


−
=          (3.49) 


  ( ), 1
HA ef


HA ef
fib


φ α
φ


φ
=


−
          (3.50) 


There are a few publications addressing the value of efα . Lees et al. [17] reported 


that 70-75% of the apatite crystal in fully mineralized turkey leg tendon is extrafibrillar 


and 30-25% is within the fibril. Sasaki et al. [38] estimated that about 77% of the apatite 


crystal is outside the fibril in bovine femoral cortical bone. Hellmich and Ulm [39] 


suggested that an average uniform apatite crystal concentration in the non-collagenous 


space in fully mineralized tissues, which results in 


 
1
1


fib
ef


col


φ
α


φ
−


=
−


           (3.51) 


 Finally, from equations (3.42), (3.47) to (3.50), the volume fractions within the 


considered representative volume elements can be determined.  
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Chapter 4 


Elastic Properties of Bone Lamellae with Fibrillar Orientation 


 


4.1 Introduction 


Bone is a fibrous composite, of which lamellar bone is the most abundant type in 


many mammals, including humans. Its characteristic building block is known as the bone 


lamella, which is stacked at different orientations to form a laminated structure. While the 


microstructure of cancellous bone, known as trabecular pockets, is composed of irregular, 


sinuous lamellae, the microstructure of cortical bone is formed by regular, cylindrical 


shaped lamellae [4], which arrange around haversian channels forming osteons. A 


lamella at an observation scale of several µm is composed of mineralized collagen fibrils 


embedded in extrafibrillar mineral foam [5]. In 1906, Gebhardt [6] categorized the 


differences between lamellar types in terms of the orientation of their higher percentage 


components and proposed that collagen fibrils change orientation from one lamella to the 


next. In the 1960s, Ascenzi A. and collaborators introduced three basic types of osteons 


with lamellae having marked transversal, alternative, and longitudinal fibril orientations, 


which appeared as bright, alternating or dark in cross section under polarized light 


microscopy [7, 8]. 


More recently, Giraud-Guille [9] proposed, through transmitted electron 


microscopy, the so-called orthogonal plywood and the twisted plywood model. For the 


orthogonal plywood model, the orientation of collagen fibrils changes from one lamella 
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to the next by an angle close to 90 . The latter model possesses a continuous rotation of 


collagen fibrils from one layer to the next, which refines Gebhardt’s model and explains 


the ability of the osteon to resist stresses along a large range of directions. Weiner et al. 


[10, 11] proposed the five sublayer model of a lamellar unit in which each sublayer is an 


array of aligned mineralized collagen fibrils with a progressive rotation of about 30 . The 


thicknesses of the five sublayers differ with two of them being thicker, which reflects the 


thickness distribution observed in rat and baboon bones. Wagermaier et al. [3] 


reconstructed the three-dimensional orientation of the mineralized collagen fibrils within 


a single lamella using scanning x-ray diffraction with a micron-sized synchrotron beam, 


along with measurements of local mineral crystallographic axis directions. In this way, 


the fibril orientations, beginning from the center of the osteon to the outmost lamella, 


were measured with a resolution of 1 µm. Ascenzi and Lomovtsev [1] used scanning 


confocal microscopy to quantify fibril orientations by location within the lamellar 


thickness. Using their method, the orientation patterns of the so-called extinct and bright 


lamellae were obtained. 


Experimental measurements of the elastic properties at the length scale of a bone 


lamella are possible by means of acoustic impedance measurements and nanoindentation 


[12]. In 2009,  Franzoso and Zysset [2] performed nanoindentation on osteons in two 


orthogonal directions. Their experimental indentation moduli varied with indentation 


direction and showed a noticeable anisotropy. 


There are several mechanical models that have been proposed to estimate the 


elastic constants of bone at the ultrastructural level. Pidaparti et al. [13] built a simple 
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composite model for osteon bone based on experimental data using a modified rule-of-


mixtures theory. Their model fit the experimental data best when the collagen was 


aligned 30  from the long axis of the bone. Akiva et al. [14]  modeled each layer of a 


lamellar unit as a unidirectional plane-parallel platelet reinforced composite and then 


assembled them in different orientations using the mixture rule. Jasiuk and Ostoja-


Starzewski [15] used a finite element model, which included a spatially random network 


of collagen fibrils to simulate a single lamella as a function of fibril volume fraction. 


Hellmich et al. [5, 16] utilized a multiscale homogenization scheme to deliver effective 


elastic properties of bone materials at different scales. Yoon and Cowin [17] introduced 


three distinct and organized hierarchical levels to represent a single bone lamella. 


Reisinger et al. [18] combined a finite element unit cell method with a homogenized 


scheme to account for different fibril orientation patterns in the lamellae. 


In this chapter, we aim to understand the effect of collagen fibril orientations on 


the elastic properties of bone lamellae or lamellar units. Their effective anisotropic linear 


elastic properties are calculated based on the multiscale homogenized model developed in 


Chapter 3 combined with a micromechanical framework of layered composite and fibril 


orientation patterns observed in experiments. The resulting effective properties are then 


compared with the nanoindentation experimental results in two orthogonal directions.  


 


  







66 


4.2 Methods 


In the framework of micromechanics, the effective properties of the laminated 


composite model of the lamellar unit as shown in Figure 4-1, which has a specific fibril 


orientation distribution pattern in each layer, can be obtained through a hierarchical 


approach. First, the effective properties of each layer are evaluated using the method 


developed in Chapter 3. Subsequently, the effective properties of the laminated 


composite were estimated by assuming that each layer is a homogeneous solid.  


 


4.2.1  Ultrastructure (Homogenization of Single Layer) 


At the ultrastructural scale, mineralized collagen fibrils are present in bundles and 


embedded as inclusions into the extrafibrillar mineral foam, which is composed of 


hydroxyapatite, ultrastructural water and non-collageneous proteins (cf. Figure 4-2). The 


volume fraction of the mineralized collagen fibrils is denoted as fibφ . By using a Ju-Chen 


first order micromechanical approximation [19, 20] and performing orientation averaging 


procedures (cf. Appendix II), the effective properties of ultrastructure, ultraC , can be 


expressed as 


 ( )1
ultra ef fibφ −= +C C I Ω Λ           (4.1) 


The fourth-rank tensor Ω  and Λ  can be written as 


  ( ) ( )
12


0ijkl ijkl fib mi nj mnpq pqst pqst sk tlI Q Q S S A Q Q P d
π


φ θ θ
−


Λ = − +∫    (4.2) 


  ( ) ( )
12


0ijkl mi nj mnpq mnpq pk qlQ Q S A Q Q P d
π


θ θ
−


Ω = +∫      (4.3) 
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where I  signifies the fourth-rank identity tensor, S  is the Eshelby’s tensor for the 


spheroid, ( )P θ  represents the probability density function of the orientation, Q  is the 


transformation matrix with the following form, 


  
1 0 0


[ ] 0 cos sin
0 sin cos


ijQ θ θ
θ θ


 
 =  
 − 


         (4.4) 


and 


 ( ) 1


fib ef ef


−
= −A C C C          (4.5) 


The parameters used in the model are listed in Table 4-1 and are consistent with average 


human lamellar bone. 


 


4.2.2  Multilayer Composite Model 


Let us consider a laminated composite in which the bonding between the layers is 


assumed perfect, i.e. the displacement and tractions across the interfaces are continuous. 


Furthermore, the thickness of each layer is assumed to be much greater than the fiber 


diameter so that the effective properties of the laminated composite can be obtained 


through the hierarchical approach we proposed. 


By introducing the following expressions [21],  


 
11 22 11 22


13 33 13 33


12 23 12 23


,      ,      2 ,      
2 2


n t n t


σ σ ε ε
σ σ ε ε
σ σ ε ε


       
       = = = =       
              


σ σ ε ε       (4.6) 


we can rewrite the stress-strain relation using Voigt notation as 
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 n nn n nt t


t tn n tt t


= +
= +


C C
C C


σ ε ε
σ ε ε


           (4.7) 


where 


11 15 16


15 55 56


16 56 66


nn


C C C
C C C
C C C


 
 =  
  


C ,   
12 13 14


25 35 45


26 36 46


nt


C C C
C C C
C C C


 
 =  
  


C     (4.8) 


12 25 26


13 35 36


14 45 46


tn


C C C
C C C
C C C


 
 =  
  


C ,     
22 23 24


23 33 34


24 34 44


tt


C C C
C C C
C C C


 
 =  
  


C     (4.9) 


Consider a laminated composite consisting of N layers of homogeneous materials 


as shown in Figure 4-3. Each layer is assumed to be homogeneous with its respective 


elastic property denoted by ( ) , ( 1, 2, )k k N= ⋅⋅⋅⋅C  in Voigt notation. Therefore, for the kth 


layer, the stress-strain relation follows from Eq. (4.7)  


  ( ) ( ) ( ) ( )k k k k
n nn n nt t= +σ ε εC C          (4.10)    


 ( ) ( ) ( ) ( ) ( )k k k k k
t tn n tt t= +σ ε εC C          (4.11) 


It is assumed here that the representative volume element being considered is 


under a uniform state of deformation. It is further assumed that the traction and 


displacements are continuous across the interfaces. Therefore, we arrive at 


 
( ) ( ),          for 1,  2, ,k k
n n t t k N= = = σ σ ε ε          (4.12) 


Substituting Eq. (4.12) into Eq. (4.10) yields  


 ( ) ( )1( ) ( ) ( ) ( )k k k k
n nn n nt t


−
= −C Cε σ ε           (4.13) 


Taking the average of ( )k
nε  over the representative volume element results in 
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( ) ( )


( ) ( )


1


1 1( ) ( ) ( ) ( ) ( ) ( )


1 1
   


N
k k


n n
k
N N


k k k k k k
nn n nn nt t


k k


φ


φ φ


=


− −


= =


=


= −


∑


∑ ∑C C C


ε ε


σ ε
        (4.14) 


where ( )kφ  is the volume fraction of the kth layer. By rearranging Eq. (4.14), we have 


 * *  n nn n nt tε ε= +C Cσ                (4.15) 


where 


 ( )
1


1* ( ) ( )


1


N
k k


nn nn
k
φ


−
−


=


 =   
∑C C           (4.16) 


 ( ) 1* * ( ) ( ) ( )


1


N
k k k


nt nn nn nt
k
φ


−


=


 =   
∑C C C C         (4.17) 


Next, substituting Eq. (4.13) into Eq. (4.11) results in 


 
( ) ( )
( ) ( )


1( ) ( ) ( ) ( ) ( ) ( )


1 1( ) ( ) ( ) ( ) ( ) ( )


:k k k k k k
t tn nn n nt t tt t


k k k k k k
tn nn n tt tn nn nt t


−


− −


= − +


 = + −  


C C C C


C C C C C C


σ σ ε ε


σ ε
       (4.18) 


Taking the average of ( )k
tσ  over the representative volume element leads to 


 
( ) ( )


( ) ( )


1


1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )


1 1


N
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t t
k
N N


k k k k k k k k
tn nn n tt tn nn nt t


k k


φ


φ φ


=


− −


= =


=


 = + −  


∑


∑ ∑C C C C C C


σ σ


σ ε
     (4.19) 


Substituting Eq. (4.15) into Eq. (4.19) yields 


 * *
t tn n nn t= +C Cσ ε ε             (4.20) 


where 


 ( ) 1* ( ) ( ) ( ) *


1


N
k k k


tn tn nn nn
k
φ


−


=


 =   
∑C C C C          (4.21) 
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 ( ) ( )1* ( ) ( ) ( ) ( ) ( ) * ( )


1 1


N N
k k k k k k


tt tt tn nn nt nt
k k
φ φ


−


= =


= + −∑ ∑C C C C C C        (4.22) 


The complete effective Voigt elastic properties of the laminated composite can be 


obtained by combing equations (4.16), (4.17), (4.21) and (4.22). 


 


4.3 Numerical Simulations 


The stiffness values of the lamellar units are predicted using the proposed 


hierarchical approach for five different fibril orientation patterns proposed or observed in 


experiments by other researchers. The Young’s modulus for arbitrary directions in the 


2 3x x−  plane, as well as their global ratio defined as 2 3E E , are calculated and compared 


with the indentation modulus measured by Franzoso and Zysset [2] listed in Table 4-2. 


At the same time, the Young’s modulus orthogonal to the plane of the lamellar units, 1E , 


is constant because it is not affected by the in-plane fibril orientation patterns. 


 


4.3.1  Orthogonal plywood 


The orthogonal plywood fibril orientation pattern proposed by Giraud-Guile [9] 


describes the bone lamella as parallel planes with only two alternating fibril directions: 


45−   and 45  along the 3x  axis (Figure 4-4a). The maximum stiffness clearly happens in 


the main fibril directions with an approximate value of 20.29 GPa (Figure 4-4b). Its 


global stiffness ratio is 1.0. 
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4.3.2 Twisted plywood 


The twisted plywood fibril orientation pattern proposed by Giraud-Guile [9] 


defines the bone lamella as a stack of planes with fibril directions rotating continuously 


from one plane to the next by a constant angle. A rotation by 180  of fibrils corresponds 


to the periodicity of the lamellae (Figure 4-5a). The effective elastic properties of the 


twisted plywood lamella are therefore transversely isotropic (Figure 4-5b). Accordingly, 


the Young’s moduli in the 2 3x x−  plane are constant with an approximate value of 18.85 


GPa. Its global stiffness ratio is also 1.0. 


 


4.3.3 Five sublayer model 


Weiner et al. [10, 11] proposed that lamellar bone should be viewed as a series of 


lamellar units, each of which is composed of five sublayers. The fibrils in successive 


sublayers rotate progressively by about 30  in one direction. In addition, the fourth and 


fifth sublayers are much thicker than the first, second, and third sublayers (Figure 4-6a, 


Figure 4-7a). The relative thicknesses of the sublayers may be adapted to different 


circumstances resulting in varied effective anisotropic elastic properties as shown in 


Figure 4-6b and Figure 4-7b. The maximum Young’s moduli are 20.83 GPa and 22.87 


GPa at 82.39  and 76.87  respectively. The global stiffness ratio falls between 1.20 and 


1.39.   
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4.3.4 Orientation patterns of Wagermaier et al. 


Using scanning small angle x-ray scattering (SAXS) and wide angle x-ray 


diffraction (WAXD) with a spatial resolution of 1µm, Wagermaier et al. [3] measured the 


local mineral crystallographic axis direction and reconstructed the three-dimensional 


orientation of the mineralized fibrils within a single osteon lamella (~5 µm). Figure 4-8 


shows the fibril orientation pattern from the most interior lamella in the osteon. While 


lamellae 1 to 7 seem to have periodic orientation patterns, the lamella 8 shows a different 


orientation than the others. However, the calculated effective elastic properties of all 


lamellae show similar orientations with maximum Young’s moduli at 118.67 7.32±   in 


the 2 3x x−  plane (Figure 4-9). The mean and the standard deviation of Young’s moduli 


of all lamellae at their preferred orientations is 24.62±1.66 GPa. Furthermore, their 


average global stiffness ratios are 1.30±0.14.   


 


4.3.5 Orientation patterns of Ascenzi and Lomovtsev 


By application of confocal laser microscopy, paired with image analysis, Ascenzi 


and Lomovtsev [1] quantified fibril orientations by location within the lamellar thickness. 


The fibril orientation is classified as transverse ( 0 22.5−   and 157.5 180−  ), oblique 


acute ( 45 22.5±  ), longitudinal (90 22.5±  ) and oblique obtuse (135 22.5±  ) in their 


study. Based on their observations, fibril orientation patterns for extinct and bright 


lamellae are shown in Figure 4-10. For extinct lamella, the maximum Young’s modulus 


is 26.31 GPa and is oriented at 78.83 ; the global stiffness ratio is approximately 1.76 
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(Figure 4-11A). For bright lamella, the maximum Young’s modulus is 25.30 GPa and 


happens at a much smaller angle of 45.40 ; its global stiffness ratio is also smaller with 


an approximate value of 1.02.  If we consider a set of extinct and bright lamellae with 


equal thicknesses as a “lamellar unit”, then its maximum Young’s modulus is 24.07 GPa 


oriented at 64.77 , and its global stiffness ratio is around 1.34 (Figure 4-12). 


 


4.4 Discussion 


Generally, our numerical results are within the standard deviation range of the 


experimental indentation results from Franzoso and Zysset [2]. However, the immanent 


structures of orthogonal and twisted plywood fibril orientation patterns lead to a global 


stiffness ratio of exactly 1.0, which was not observed in the experiments.  


The directions of the maximum Young’s moduli of the fibril orientation patterns 


by Wagermaier et al. [3] and Ascenzi and Lomovtsev [1] are aligned on at average 


28.67  and 25.23  respectively to the longitudinal direction of the osteon (Figure 4-9 


and Figure 4-12), which is consistent with the principle orientation of collagen 


investigated by Turner et al. [22].  


The five sublayer model of Weiner et al. [10, 11] seems to be a good choice when 


the experimental measurements of fibril orientations are not available. Both the effective 


elastic properties and global stiffness ratio in the lamella plane are close to the 


experimental results. Furthermore, it is relatively simple to adjust relative thicknesses to 


fit the experimental data.  
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The presented hierarchical approach is a useful tool for studying the elastic 


behavior of lamellar bone. However, the effective elastic properties of the lamellae are 


affected by the lower level homogenization steps in which the calculated properties have 


not been validated by experiments. 


 


4.5 Conclusion 


Within the framework of micromechanics, we have predicted the effective 


anisotropic linear elastic properties of bone lamellae or lamellar units; these predictions 


are quite similar to reported experimental results. The effects of fibril orientation patterns 


on the elastic properties of lamellar bone were also investigated. The proposed 


framework can reasonably determine the effective elastic properties of lamellar bone 


based on the fibril orientation patterns observed in experiments.  
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Table 4-1. Set of input parameters for the ultrastructure 
Parameters Values Reference 


Collagen elastic modulus 2.9 GPa Sasaki and Odajima [23] 


Collagen Poisson’s ratio 0.3 - 


Apatite crystal bulk modulus 80 GPa Gilmore and Katz [24] 


Apatite crystal shear modulus 45 GPa Gilmore and Katz [24] 
Mineral crystal aspect ratio in 
fibril 40/3 Akkus [25] 


Ultrastructural water and void 
aspect ratio 1 - 


Fibril aspect ratio 100 - 
Fibril volume fraction in 
ultrastructure 0.53 Fritsch and Hellmich [5, 16] 


Apatite crystal volume 
fraction in ultrastructure 0.34 Raum et al. [26] 


Fritsch and Hellmich [5, 16] 
Apatite crystal distribution 
parameter 0.75 Lees et al. [27] 


Sasaki et al. [28] 
 


 


 


Table 4-2. Results of nanoindentation  measurements  


2,indE  3,indE  2, 3,ind indE E  Reference 


22.31 2.16±  GPa 18.06 1.84±  GPa 1.25 0.18±  Franzoso and Zysset 
[2] 
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Extrafibrillar Mineral Foam


ultrastructural water
(with non-collagenous proteins)
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apatite crystal


apatite crystalHAC
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(with non-collagenous proteins)
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Figure 4-2. Micromechanical representation of ultrastructure based on three 
homogenization steps. 


1x
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Figure 4-1. The proposed laminated composite model for lamellar unit. Each layer has 
specific fibril orientation distribution pattern. 
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Figure 4-3. Multilayer composite. 


Figure 4-4. Results for the orthogonal plywood fibril orientation pattern: (a) Fibril 
angle θ depending on normalized 𝒙𝟏-axis. (b) Young’s modulus in the 𝒙𝟐−𝒙𝟑 plane 
and its global ratio. The red circles represent the average values of the experimental 
indentation results from Franzoso and Zysset [2]. 
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Figure 4-5. Results for the twisted plywood fibril orientation pattern: (a) Fibril angle θ 
depending on normalized 𝒙𝟏-axis. (b) Young’s modulus in the 𝒙𝟐−𝒙𝟑 plane and its 
global ratio. The red circles represent the average values of the experimental 
indentation results from Franzoso and Zysset [2]. 


Figure 4-6. Results for the five sublayer model: (a) Fibril angle θ depending on 
normalized 𝒙𝟏-axis. (b) Young’s modulus in the 𝒙𝟐−𝒙𝟑 plane and its global ratio. The 
red circles represent the average values of the experimental indentation results from 
Franzoso and Zysset [2]. 
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Figure 4-7. Results for the five sublayer model with different relative thicknesses: (a) 
Fibril angle θ depending on normalized 𝒙𝟏-axis. (b) Young’s modulus in the 𝒙𝟐−𝒙𝟑 
plane and its global ratio. The red circles represent the average values of the 
experimental indentation results from Franzoso and Zysset [2]. 
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Figure 4-8. Fibril angle θ depending on normalized 𝒙𝟏-axis from the most interior 
lamella [3]. 
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Figure 4-9. Results for the fibril orientation pattern of Wagermaier et al. [3] beginning 
from the most interior lamella 1 to 8. The red circles represent the average values of 
the experimental indentation results from Franzoso and Zysset [2]. 
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Figure 4-10. Percentages of fibril orientation through lamellar thickness for (a) extinct 
and (b) bright lamellae. Each of (a and b) shows three parabolas and a horizontal line. 
 


Figure 4-11. Results for the fibril orientation pattern of Ascenzi and Lomovtsev [1] 
for (a) extinct and (b) bright lamellae. The red circles represent the average values of 
the experimental indentation results from Franzoso and Zysset [2]. 
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Figure 4-12. Results for the fibril orientation pattern of Ascenzi and Lomovtsev [1] 
for a given “lamellar unit”. The red circles represent the average values of the 
experimental indentation results from Franzoso and Zysset [2]. 
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Chapter 5 


Effective Elastic Micromechanical Damage Model for  


Bone with Evolutionary Matrix Cracking 


 


5.1 Introduction 


Fatigue damage in bone occurs in the form of microcracks. This microdamage 


acts as a stimulus for bone remodeling. However, if this damage accumulates at such a 


rate that the capacity for bone repair is exceeded, stress fractures occur. These fractures 


occur commonly in athletes and soldiers engaged in high intensity, repetitive activities 


such as marching or running. On the other hand, if damage accumulates at ‘normal’ rates 


but the bone’s repair mechanism is deficient, fragility fractures result, which occur 


commonly in aging bone [1]. A combination of cumulative loading history, focal changes 


in material properties and alteration in the ability of the tissue to perceive and/or react to 


microcracks may all play roles in this accumulation of bone microdamage with aging. 


This accumulation of microdamage in bone will contribute to decreased strength and 


stiffness. In addition, and perhaps most significantly for understanding aging and 


increased bone fragility, matrix microdamage in bone will result in a profoundly reduced 


resistance to fracture. The main objective of this chapter is to develop an elastic 


micromechanical damage formulation for bone material with evolutionary matrix 


cracking.   
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5.2     Methods 


In the framework of micromechanics, the approximate ensemble-volume 


averaged compliance for the extravascular bone material with evolutionary matrix 


cracking can be derived and used to investigate the damage behavior of human bone at 


the lamellar level. 


 


5.2.1 The Overall Compliance due to the Existence of Penny-Shaped 


Microcracks 


Following Lee and Ju [2], let us consider a two-phase composite composed of a 


linear elastic matrix and randomly located penny-shaped microcracks. It is assumed that 


the solid is locally homogeneous and penny-shaped microcracks do not intersect one 


another. Local homogeneity implies that all probability density function (PDF) do not 


vary under small translation on a macroscopic length scale. If all penny-shaped 


microcracks are aligned (parallel) and of equal size, the microcrack-induced perturbed 


strain of the composite can be expressed as [3, 4] 


 ( ) ( ) [ ] [ ] ( )1 |
2i


iS
f dSε ′ ′= ⊗ ⊗∫x x u n + n u x x     (5.1) 


where “⊗ ” signifies the tensor expansion; ′x  denotes a point on the surface ( iS ) of a 


microcrack centered at x ; ( )f x  is the PDF for a microcrack centered at x ; and [ ]u  is 


the vector of microcrack opening displacements. Since all microcracks are aligned 


(parallel), we can define the microcrack orientation  ( )0,0,1 Tn = . For an open penny-
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shaped microcrack with radius a  embedded in an infinite linear elastic matrix, the 


microcrack opening displacements at ′x  (at a distance r  from the center of the penny-


shaped microcrack) are 


 


[ ]


[ ]


( )
( ) ( )


2
0 2 2


0
0


2
8 1


2
2


2


x


y


z


u s
u a r t


E
pu


ν
π ν


ν


′   
−   ′  = −     −   −′   


     (5.2) 


where E  and 0ν  are the Young’s modulus and Poisson’s ratio of the matrix material, 


respectively; and p , s  and t  are the z-direction normal, the x-direction shear and the y-


direction shear stresses projected on the microcrack surface in its local coordinates as 


shown in Figure 5-1. 


Substituting Eq. (5.2) into Eq. (5.1) and carrying out the integration, we obtain 


 ( ) ( ) ( )
( )


2
0 3


0


16 1
3 2


f a
E


ν
ν


−
′ =


−
e x x g F        (5.3) 


where ′e  is the microcrack-induced perturbed engineering strain (the Voigt’s notation) 


defined as  


 ( )


1


2


3
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'
2


2


2


xx


yy


zz


yz


zx


xy


e
e
e
e
e
e


ε


ε


ε


ε


ε


ε


′ ′     ′ ′   ′ ′   ≡ =   ′ ′   
   ′ ′
   ′     ′ 


e x            (5.4) 


The transformation matrix g  and the local stress vector F  are 
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0 0 0
0 0 0


2 0 0
0 0 2
0 2 0
0 0 0
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 
 
 
 −
 
 
 
 
 


g = ;  
p
s
t


 
 
 
 
 


F =     (5.5) 


The local stress vector F  is the superposition of the unperturbed local stress vector 0F  


due to remote loading and the local stress perturbation  F  due to the three-dimensional 


microcrack interaction. 


 


0


0 0


0


p p
s s
t t


   
   = + = +   
     














F F F          (5.6) 


Since the near-field microcrack interaction effects are not considered in this section, we 


have 0=F F . The stress 0F  due to far-field loads can be expressed as 


 0 0
0=F K σ         (5.7) 


where  


 0


0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0


 
 =  
  
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0
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0
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zz


xy


yz


zz


σ
σ
σ
σ
σ
σ


 
 
 
  ≡  
 
 
 
  


σ    (5.8) 


By taking the ensemble average of Eq. (5.7) with 0=F F , we arrive at 


 0 0
0 0= = F K Kσ σ             (5.9) 
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From Eq. (5.3) and Eq. (5.9), the local microcrack-induced ensemble-averaged perturbed 


strain at a typical point x  can be obtained as 


 ( ) ( )*1 0:′ =e x S x σ            (5.10) 


where the ensemble-averaged perturbed local compliance reads (assuming a uniform 


microcrack radius a  for simplicity) 


 ( ) ( )
( ) ( )


2
0*1 3


0
0


16 1
3 2


f a
E


ν
ν


−
=


−
S x x g K       (5.11) 


To obtain the volume-ensemble-averaged compliance due to the existence of 


microcracks within a representative volume element (RVE), we simply apply the volume-


average operator to Eq. (5.10) and Eq. (5.11). As a consequence, we have 


 ( ) ( ) ( )
( )


( )2
0*1 *1 3


0
0


16 11
3 2


V
V


f d
d a


V E V
ν
ν


−
= =


−
∫∫ 


x x
S x S x x g K  (5.12) 


Let us assume that there are N  microcracks in the RVE; i.e., 


 ( )
V


f d N=∫ x x          (5.13) 


Substituting Eq. (5.13) into Eq. (5.12), we have 


 
( )
( )


2
0*1


0
0


16 1
3 2E


ν
ω


ν
−


=
−


S g K          (5.14) 


where 
3Na


V
ω ≡  is a parameter representing microcrack concentration. From Equations 


(5.5), (5.8) and (5.14), we obtain 
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( )
( )


2
0 0*1


0


0 0 0 0 0 0
0 0 0 0 0 0


16 1 0 0 2 0 0 0
0 0 0 2 0 03 2
0 0 0 0 2 0
0 0 0 0 0 0


E
ν ν


ω
ν


 
 
 


− − 
=  −  


 
 
 


S       (5.15) 


 


5.2.2 The Overall Compliance due to the Pairwise Microcrack 


Interaction 


Let us consider two randomly located, aligned, equal-sized, penny-shaped 


microcracks embedded in a three-dimensional infinite, linear elastic matrix. The local 


coordinate systems for microcracks 1 and 2 of radius a  are shown in Figure 5-2. The z -


axis is chosen as the direction normal to the microcrack surface. According to the 


pseudo-traction concept [5], the problem of two interacting microcracks subjected to the 


far-field stresses can be decomposed into a homogeneous problem and two sub-problems. 


In the homogeneous problem, a solid without microcracks is subjected to the far-field 


stresses. In the sub-problem i  ( i =1,2), an infinitely extended solid contains only the i -th 


penny-shaped microcrack and is subjected to zero remote stress at infinity. 


The perturbed normal and shear stress ip , is , it  ( i =1,2) along the surfaces at the 


microcrack i  ( i =1,2) location were explicitly derived by Ju and Tseng [5] as 


 0
1 2 1 2− −=F K F 


         (5.16) 


where ( ) 1-α α −≡K I


 . The 6 × 6 microcrack interaction matrix α  and stress vectors 


1 2−F  and 0
1 2−F  are shown as followed 
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











F         (5.18) 


where definitions of the parameters ( )j
ib , ( )j


ic  and ( )j
id  ( i =1,2; j =3,5,6) are summarized 


in Appendix III. 


If we define { }1 1 1, , Tp s t=F 


   and 1 ≡K the first three rows of K , the perturbed 


stresses on the surface of a microcrack due to the existence of the second microcrack can 


be expressed as 


 0
1 1 2−=F K F


         (5.19) 


Since the two microcracks under consideration are aligned, it can be easily shown that 
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F K σ    (5.20) 
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From Eq. (5.19) and Eq. (5.20), the perturbed stress vector F  over the surface of a 


microcrack is 


 0=F K


σ         (5.21) 


where 1 2≡K K K .  


The ensemble-averaged local stress perturbation takes the following form 


 ( ) ( ) ( )1 1 1 1| |f d
Ξ


= ∫ F x F x x x x x     (5.22) 


where Ξ  designates the open integration domain which depends on the loading 


conditions, ( )1|F x x  is the ensemble-averaged stress perturbation for a microcrack 


centered at x  over the subclass of realizations having a microcrack centered at 1x , and 


( )1 1|f x x  is the conditional PDF for finding a microcrack centered at 1x  given a 


microcrack centered at x . 


The conditional PDF ( )1 1|f x x  can be further approximated by the PDF for 


finding a microcrack centered at x , ( )1f x , if microcracks do not intersect and local 


homogeneity assumption is true. Consequently, Eq. (5.22) can be simplified as 


 ( ) ( ) ( )1 1 1|f d
Ξ


= ∫ F x x F x x x        (5.23) 


Combining Eq. (5.21) and Eq. (5.23), we arrive at 


 ( ) 0
1 :f=F x K σ         (5.24) 


where 


 2
1 sind r drd dθ θ φ


Ξ Ξ
≡ =∫ ∫K K x K        (5.25)  
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The spherical coordinate system ( ), ,r θ φ  is used to describe the random location 


1x  of the second microcrack relative to the first random microcrack centered at x . Note 


that θ  varies from 0 to π and φ  ranges from 0 to 2π. If we normalize r  with respect to 


the microcrack radius a (i.e., /r aξ ≡ ), then Eq. (5.25) can be recast as 


 3 3 2ˆ sina a d d dξ θ ξ θ φ
Ξ


≡ = ∫K K K     (5.26) 


Combining Equations (5.3), (5.24) and (5.26), the local ensemble-averaged perturbed 


strain (at a typical point x ) due to the microcrack interaction is 


 ( ) ( )*2 0:′ =e x S x σ       (5.27) 


where  


 ( ) ( )
( ) ( )


2
0*2 2 6


1
0


16 1 ˆ
3 2


f a
E


ν
ν


−
=


−
S x x g K        (5.28) 


To obtain the volume-ensemble-averaged compliance due to the microcrack 


interaction within a RVE, we simply apply the volume-average operator to Eq. (5.28). 


Consequently, we have 


 ( ) ( ) ( )
( )


( )22
10*2 *2 6


0


16 11 ˆ
3 2


V
V


f d
d a


V E V
ν
ν


−
=


−
∫∫ 


x x
S x S x x = g K   (5.29) 


Let us assume that there are N  microcracks in the RVE; i.e., 


 ( )1V
f d N=∫ x x          (5.30)  


Furthermore, if the variance of the PDF ( )1f x  for locations of microcracks is small (e.g., 


uniform probability), we can have 
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( ) ( )


2
2 211 VV


f df d N
V V V


 
 ≅ =
∫∫ x xx x


     (5.31) 


Substitution of Eq. (5.31) into Eq. (5.29) then results in 


 
( )
( )


2
0*2 2


0


16 1 ˆ
3 2E


ν
ω


ν


−
=


−
S g K       (5.32) 


where 
3Na


V
ω ≡  is a parameter representing microcrack concentration. From Equations 


(5.5), (5.26) and (5.32), the overall compliance due to the pairwise microcrack interaction 


can be obtained. 


 


5.2.3 The Overall Compliance due to the Existence of Inclusions 


According to the Eshelby’s equivalence principle, the perturbed strain field ( )ε ′ x  


induced by inhomogeneities can be related to the specified eigenstrain by replacing the 


inhomogeneities with the matrix material. Following Ju and Chen [6, 7], and Ju and Sun 


[8, 9], the volume-averaged strain tensor for the two-phase composites can be simplified 


as  


 0 0 *:ε ε ε ε φ ε′= + = + S       (5.33) 


where *ε  denotes the eigenstrain, and S  signifies the Eshelby’s tensor . 


If we neglect the near-field inter-inclusion interaction effects, then the solution of 


eigenstrain *ε  for the single inclusion problem is explicitly expressed as [6] 


  ( ) ( )1 1* 0 1 0
0: :ε ε σ− − − = − + = − + A S A S C    (5.34) 
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where the fourth-rank tensor A  takes the form 


  [ ] 1
1 0 0


−− A = C C C        (5.35)  


Here, 0C  and 1C  are the stiffness tensors of the matrix and inclusions, respectively. By 


combining Eq. (5.33) and Eq. (5.34), the resulting first-order approximation of the 


volume-averaged perturbed strain due to the existence of inclusions becomes 


  ( ) 1* 1 0
0: :ε φ ε φ σ− − ′ = = − +  S S A S C     (5.36) 


Therefore, the corresponding ensemble-volume averaged perturbed compliance tensor, 


characterizing the first-order contribution due to noninteracting inclusions, takes the form 


  ( ) 1*3 1
0φ − − = − +  S S A S C          (5.37) 


The inverse of fourth-rank tensor can be easily performed using generalized isotropic 


tensor by Ju and Sun [9]. (cf. Appendix IV). 


 


5.2.4 The Overall Compliance and the Microcrack Concentration 


Evolution 


Combining Equations (5.15), (5.32) and (5.37), the overall (volume-ensemble-


averaged) effective moduli for a micro-crack-weakened solid (with inclusions) are 


obtained: 


  0 *1 *2 *3= + + +S S S S S      (5.38) 


 :ed dε σ= S   (Stress Driven Formulation)   (5.39) 


where  0S  is the elastic compliance of the matrix. 
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Since the number of microcracks would increase with the stress level [10] , to 


characterize the evolution of concentration of microcracks, the following three-


parameters formulation is adopted: 


  3BA a Cω σ= +         (5.40) 


where σ  is the applied far-field stress, and A , B  and C  are constants.  


 


5.2.5 Extravascular Bone Material 


Within a RVE of extravascular bone material with characteristic length 100 µm, 


spheroid voids (osteocyte lacunae) which are typically 2 µm in diameter and 6 µm in 


long axis [11] are embedded in a contiguous matrix built up by the extracellular bone 


material (Figure 5-3). The effective properties of the extracellular bone material can be 


obtained through the hierarchical approach developed in Chapter 3 and Chapter 4. The 


parameters used in the model are listed in Table 5-1, which conform to average human 


lamellar bone.  


 


5.3     Numerical Simulations and Discussions 


To demonstrate the capability of proposed framework, comparisons are made 


between the present theoretical predictions and the experimental data by Ascenzi et al. 


[12]. According to our review of literature, the microcrack size is generally between 50 to 


100 µm. However, at the lamellar level, diffuse damage which is one order or more of 


magnitude smaller than the microcrack should be considered and regarded as microcrack 


here. 
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For mathematical simplicity, the average microcrack radius ( a ≅ 0.5 µm) is 


adopted. As illustrated in Figure 5-4 and Figure 5-5, when microcrack concentration 


develops, the overall compliance is increased, making the lamellae more deformable. 


Figure 5-6 and Figure 5-7 show the prediction of the stress-strain curves of the lamella 


at the initial and final stage of calcification, respectively. It is interesting that there are 


pre-existing microcracks in both types of lamellae, which may be caused by preparation 


of the specimens, or suggest that microdamage is present in normal bone tissue in vivo 


[13]. In addition, from the results, the fully calcified lamella has higher initial microcrack 


concentraion implying microdamage accumulates with age.  


Finally, fully calcified bone has higher stiffness that to be expected, however, 


fully calcified bone could be quasi-brittle, therefore it may have lower tolerance for 


microcracks, although the strength is higher. 


 


5.4 Conclusion 


To investigate the effects of accumulation of microdamage in bone upon the 


material properties of lamellae, an elastic micromechanical damage formulation is 


proposed by incorporating the hierarchical structure concept and evolutionary matrix 


cracking. It is demonstrated that microdamage exists in bone and contributes to the 


degradation of bone’s material properties. The predicted mechanical behaviors of the 


lamellae are consistent with the experimental observations in the literature.    
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5.5     Appendix V: The Parameters ib , ic  and id  in Eq. (5.17) 


The parameters ib , ic , and id  in Eq. (5.17) take the form [5] : 
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where 
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For the sub-problem 2, φ  in Equations (5.41), (5.42) and (5.43) is replaced by π φ− . 
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5.6 Appendix VI: An Inverse Formula for the Generalized Isotropic 


Fourth-Rank Tensor 


  ( ) ( ) ( )ijkl IK ij kl IJ ik jl il jkQ m M w Wδ δ δ δ δ δ= + + + +      (5.47) 


where m  and w  are constants, whereas, M  and W  are second-rank tensors. Moreover, 


W  should be symmetric. After some derivations, it can be shown that the inverse of ijklQ  


takes the forms: 


  
( ) ( ) ( )1 1


2 4
IK


ijkl ij kl ik jl il jk
II IJ


YQ
w W w W


δ δ δ δ δ δ− = − + +
+ +


    (5.48) 


where 


1
1 11 11 21 31 1


2 12 22 22 32 2


3 13 23 33 33 3


2 2
2 2


2 2


I I


I I


I I


Y m w M W m M m M m M
Y m M m w M W m M m M
Y m M m M m w M W m M


−+ + + + + +    
    = + + + + + +       + + + + + +     
            (5.49) 
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5.7 Appendix VII: Criterion for Microcrack Concentration 


The volume of an individual open penny-shaped microcrack with radius a  can be 


estimated by the following equation: 


 24
3crackV a bπ≅          (5.50) 


where b  is the maximum crack mouth opening displacement. 


If there are N  microcracks within the representative volume element, the total 


volume of microcracks must be less than the volume of RVE, that is 


   
24


3 1crack
N a bN V


V V


π⋅
≅ ≤         (5.51) 


 In order to obtain the estimate of the microcrack concentration, we substitute 


b ka=  into Eq. (5.51), which yields 


 
3 3


4
Na
V k


ω
π


= ≤          (5.52) 
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Table 5-1. Set of input parameters for the extravascular bone material 


Parameters Values Reference 


Collagen elastic modulus 2.9 GPa Sasaki and Odajima [14] 


Collagen Poisson’s ratio 0.3 - 


Apatite crystal bulk modulus 80 GPa Gilmore and Katz [15] 


Apatite crystal shear modulus 45 GPa Gilmore and Katz [15] 
Mineral crystal aspect ratio in 
fibril 40/3 Akkus [16] 


Ultrastructural water and void 
aspect ratio 1 - 


Fibril aspect ratio 100 - 
Fibril volume fraction in 
ultrastructure 0.53 Fritsch and Hellmich [17, 18] 


Apatite crystal volume fraction 
in ultrastructure 


0.40 for fully calcified lamella 
0.15 for initial stage of 
calcification 


Fritsch and Hellmich [17, 18] 


Apatite crystal distribution 
parameter 0.75 Lees et al. [19] 


Sasaki et al. [20] 
Osteocyte lacunae volume 
fraction  0.025 Ascenzi et al. [21] 


Length of specimens 33 µm Ascenzi et al. [22] 
Ascenzi et al. [12] (Figure) 


Lamellar width 70 µm Ascenzi et al. [22] 


Lamellar thickness 2 µm Ascenzi et al. [12] 
“Figure” means the value was calculated from a figure in the cited reference 
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Figure 5-1. A schematic plot of the normal and shear stresses projected on the 


penny-shaped microcrack surfaces. 
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Figure 5-2. The coordinates for two penny-shaped microcracks. 
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Figure 5-3. Micromechanical representation of extravascular bone material. 
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Figure 5-4. The overall compliance 33S  of the lamella at the initial stage of 


calcification. 


Figure 5-5. The overall compliance 33S  of the fully calcified lamella. 
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Figure 5-7. The comparison of stress-strain curve of the fully calcified 


lamella. 


Figure 5-6. The comparison of stress-strain curve of the lamella at the initial 


stage of calcification. 
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Chapter 6 


Examination of Rising R-curve Behavior in Bone Using Fiber 


Bridging Models 


 


6.1 Introduction 


Bone is a composite material with a complex hierarchical structure which is 


imbued with several mechanisms to resist fracture at multiple scales. These scales relate 


to the characteristic structural dimensions in bone, which vary from tropocollagen at the 


nanoscale, mineralized collagen fibrils at the scale of tens of nanometers, collagen 


bundles to form the lamellar structure above micrometer dimensions, to the osteon 


structures, which are several micrometers in size [1]. It is the simultaneous operation of 


toughening mechanisms at these different size scales that provides bone with its 


prominent strength and toughness. The following toughening mechanisms have been 


reported for cortical bone, including sacrificial bonds between fibrils [2], plasticity ahead 


of the crack [3], constrained microcrack [4], crack deflection [5, 6] and crack bridging [5]. 


For individual microcracks, bridging by collagen fibrils might be significant since the 


substantially smaller collagen fibrils would be able to bridge a large percentage of the 


crack length.  


Crack bridging is one of the so called extrinsic toughening mechanisms which act 


to shield the crack from part of the applied driving force and operate behind the crack tip 


in the crack wake. For the materials with extrinsic toughening mechanisms, the fracture 
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resistance increases with crack extension and stable crack growth can occur before 


unstable fracture. Rising R-curve behavior is the direct result of extrinsic toughening 


mechanisms, which cause the crack-size dependence of the toughness. In this chapter, 


crack bridging by collagen fibrils in toughening cortical bone was first time investigated 


systematically.  


 


6.2 Fiber Bridging Model 


Fiber bridging mechanism can enhance the fracture toughness of the material by 


providing the bridging-stress across the crack, which reduces the chance that the crack 


will grow larger.  


Let us consider a single crack of 2a  length bridged by unidirectional fibers under 


remote tensile stress 0σ  as shown in Figure 6-1. A mode I stress intensity is created at 


the crack tips, which is characterized by the stress intensity factor IK . According to the 


linear elastic fracture mechanics, if IK  is greater than the fracture toughness, ICK , of the 


material, the crack may start propagating leading to the fracture of the material, which is  


     I ICK K≥         (6.1) 


If there were no fibers bridging the crack, the stress intensity factor of a Griffith 


crack of length 2a  is given by [7] 


 0
2 20


2
a


app
aK dx


a x
σ


π
=


−
∫      (6.2) 
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However, due to the presence of fibers, the crack opening is constrained by the 


fiber bridging mechanism. The bridging fibers exert a stress ( )p x  on the crack surfaces 


which leads to the actual stress intensity factor of the model is 


 
( )0


2 20
2


a


tip app br


p xaK dx K K
a x


σ
π


−  = = −
−


∫      (6.3) 


Since the total stress is shared between the fibers and the matrix, based on the 


volume-ensemble averaging scheme, we have 


 ( )0 1f f f mσ φ σ φ σ∞ ∞= + −        (6.4) 


where fφ  is the volume fraction of the fiber; fσ ∞  and mσ
∞  represent the average axial 


stresses in the fiber and matrix far away from the crack, respectively. The compatibility 


condition of the axial strain of the fiber, matrix, and composite leads to the following 


equation, 


 0
*


f m


f mE E E
σ σ σ∞ ∞


= =          (6.5) 


where fE  and mE  are the Young’s moduli of the fiber and matrix, respectively, while 


*E  denotes the effective Young’s modulus of the composite in the fiber direction.  


Using the micromechanical framework developed by Ju and Chen [8, 9], *E  can 


be obtained based on the following effective stiffness tensor of the composite, 


    ( ) 1*
0 • (1 )f fφ φ


− = + + −  
C C I A S      (6.6) 


where 


    ( ) 1
1 0 0


−= − A C C C         (6.7) 
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In Eq. (6.6), 0C  and 1C  represent the stiffness tensor of the matrix and fiber, respectively; 


S  denotes the interior-point Eshelby’s tensor for spheroid (cf. Appendix I). 


 Combining (6.4) and (6.5), the axial stress in the fiber far away from the crack 


can be expressed as 


    
( ) ( ) 01 1


f
f


f m


E
E


σ σ
φ η


∞ =
− +


     (6.8) 


where 


    
( )1


f f


f m


E
E


φ
η


φ
=


−
        (6.9) 


 Following Qu and Cherkaoui [10], the stress exerted on the crack surface by the 


bridging fibers and the crack opening displacement can be derived as followed. As shown 


in Figure 6-2, the center of the fiber is x  distance away from the center of the crack. Due 


to the geometric singularity, the stress fields near the crack surface are quite high, and 


certain portions of the fiber-matrix interface have failed. Assuming the shear stress on the 


interface due to friction denoted by τ  is a constant, within the debonding of sliding zone, 


the axial stress in the fiber can be written as 


    ( ) 2
f fz z


b
τσ σ ∞= +          (6.10) 


where b  is the fiber radius. On the basis of Hook’s Law, the axial strain in the fiber is 


    ( ) 2f
f


f f


z z
E bE
σ τε


∞


= +         (6.11) 


The integration of Eq. (6.11) with respect to z  leads to the total extension of the fiber 


within the sliding zone: 
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   ( )
( ) ( )


0
2 ( ) 2 2 ( )


l x f
f f


f f


l x
x z dz l x


E bE
σ τ


ε
∞ 


∆ = = +  
 


∫     (6.12) 


 Similar to Eq. (6.10) and (6.11), by assuming the stress in the matrix within the 


sliding zone is also a linear function of z , we can write 


    ( ) ( )
1m m


zz
l x


σ σ ∞ 
= − 
 


        (6.13) 


    ( ) ( )
1 m


m
m


zz
l x E


σε
∞ 


= − 
 


        (6.14)  


The integration of Eq. (6.14) gives the axial elongation of the matrix within the sliding 


zone: 


   ( ) ( )
( )


0
2 2 ( )


l x
m


m m
m


x z dz l x
E
σε


∞


∆ = =∫        (6.15) 


The difference between Eq. (6.12) and (6.15) yields the crack opening 


displacement, ( )v x : 


   ( ) ( ) ( ) ( )2 2 2 2 ( ) ( )f m
f m


f f m


l x
v x x x l x l x


E bE E
σ τ σ∞ ∞ 


= ∆ − ∆ = + −  
 


   (6.16) 


Substituting Eq.(6.5) and (6.8) into Eq.(6.16), we have 


   ( ) ( )
( )


( )0


2 1f f f f m


l x
v x l x


bE E E
τ σ


φ φ


 
 = +


  + −  
     (6.17) 


By solving the above equation, one can find 


   ( ) ( )
( ) ( )2 2


0
2 2


0


16 1
1 1


4 1
f f


f


E v xbl x
b


η φ τησ
η φ τ η σ


 + = + −
+  


 
    (6.18) 
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 In practice, the fiber-bridging stress is finite based on the fiber strength. 


Furthermore, because of the variability of the fiber strength, it may be reasonable to 


characterize the probabilistic nature of it by introducing the following equation: 


     ( ) ( )ˆ 1f fx P xφ φ  = −         (6.19) 


where 


    ( ) ( )1, 1 exp
m


f f
f cr


p x
P xφ


φ σ
 


= − − 
  


       (6.20) 


In Eq.(6.19) and (6.20), φ̂  represents the effective volume fraction of the fiber on the 


crack surface, fP  is the failure probability of the fiber based on Weibull distribution [11], 


m  is the Weibull parameter, and crσ  is the average failure stress of the fiber. It is noted 


that, in order to predict the extent of the damage, the bridging stress ( )1p x  without fiber 


breakage is considered. Substituing Eq. (6.19) and (6.18) back to Eq.(6.10), the bridging 


stress exerted on the crack surface can be written as 


   ( ) ( ) ( )
( ) ( )2 2


0
2 2


0


ˆ 16 1ˆ 1 1
2 1


f f
f


f


E v x
p x l


b
η φ τφ ησφσ


φ η η σ


 + = = + +
+  


 
    (6.21) 


 Finally, the crack opening displacement is given by [10] 


  


( ) [ ]


( )


2 2 2 2


0 2 2 2 20


2 2 2 2
2 2


0 2 2 2 20


2 ( ) log


22 log


a


a


D a x a tv x p t dt
a x a t


D a x a tD a x p t dt
a x a t


σ
π


σ
π


− + −
= −


− − −


− + −
= − −


− − −


∫


∫
     (6.22) 


where  
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    11 22 12 66 22


11 11


2
2 2


A A A A AD
A A


 + = +  
  


        (6.23) 


  
2


11
2


1A
E
ν−


= , 
2


1 2
22 2


1


E EA
E
ν−


= , ( )23
12


1


1
A


E
ν ν+


= − , 66
12


1A
G


=    (6.24)   


In Eq. (6.24), it has been assumed that f mν ν ν= = . In order to find ( )v x , a numerical 


method needs to be employed. Once ( )v x  is obtained, the fiber-bridging stress ( )p x  and 


the stress intensity factor can be easily found from Eq.(6.21) and (6.3).  


 


6.3 Numerical Simulations and Discussions 


 On the foundation of proposed crack bridging model, a series of numerical 


simulations are performed to investigate the fracture behaviors of bone at the lamellar 


level. The parameters used in the model are listed in Table 6-1. Figure 6-3 and Figure 6-


5 illustrate the relations between the fiber-bridging stresses and the far-field stresses. 


When fiber breakage is not considered, the fiber-bridging stresses increase proportionally 


to the far-field stresses. However, in the presence of fiber breakage, a higher applied far-


field stress doesn’t necessarily give rise to a higher fiber-bridging stress; instead, it may 


trigger a larger amount of fiber breakage, and therefore lowers the fiber-bridging stress. 


In addition, the fiber-bridging stresses, with the exception of those near the crack tip, are 


nearly uniformly distributed. In the presence of extensive fiber breakage, the fiber-


bridging stresses exist only near the crack tip.  


 Figure 6-4 and Figure 6-6 demonstrate the effect of far-field stress on the crack 


mouth opening displacement. Clearly, the crack mouth opening displacements are 
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magnified substantially due to the presence of fiber breakage. Figure 6-7 to Figure 6-10 


show the effect of far-field stress on the stress intensity factor and the bridging stress 


intensity factor associated with the shear stress on the interface. It is observed, for the 


bridging stress intensity factor, that there is an asymptotic value as the shear stress on the 


interface increases to more than 20 MPa, which may support the hypothesis that the 


interface strength is dominated by electrostatic interactions in biological materials at this 


scale [3]. Figure 6-11 and Figure 6-12 exhibit the effect of the far-field stress and fiber 


breakage on the stress intensity factor and the bridging stress intensity factor. It is shown 


that fiber breakage has a prominent effect on both stress intensity factors. As the far-field 


stress increases, the differences in both stress intensity factors can be easily observed.  


 The evolutions of the stress intensity factor and the bridging stress intensity factor 


caused by the crack length and the far-field stress are illustrated with Figure 6-13 to 


Figure 6-16 . As expected, without fiber breakage, the stress intensity factor is always 


reduced and the bridging stress intensity factor is always increased with the extension of 


the crack length, which suggests that the crack propagation can be ceased with a certain 


crack length. A higher applied far-field stress also leads to a higher fiber-bridging stress 


intensity factor. On the other hand, in the presence of fiber breakage, a higher applied far-


field stress triggers a larger amount of fiber breakage resulting in a much smaller bridging 


stress intensity factor and a higher stress intensity factor. It is shown clearly in Figure 6-


16 that the bridging stress intensity factors are close when the applied far-field stresses 


are equal to 25 and 100 MPa in our case. 
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An increase in the bridging stress intensity factor, brK , can be explained by the R 


or resistance curve concept. According to ASTM E-561, an R-curve is a plot of the crack 


extension force (i.e. fracture toughness) versus the crack extension, for slow-stable crack 


propagation, and it describes the toughness development in a material. The qualitative 


results reflected clearly in Figure 6-16 showing the bridging stress intensity factor as a 


function of crack length. In addition, a comparison between rising R-curve behaviors 


(depicted in Figure 6-14 and Figure 6-16) and bridging stress distributions (Figure 6-3 


and Figure 6-5) clearly show a direct correspondence existing between the bridging 


stress exerted on the crack surfaces and the rising R-curve effect, that is, the higher the 


magnitude of the bridging stress, the steeper the rise. In other words, the larger the 


magnitude of the microscopic bridging-stress distributions, the more fracture resistant the 


material.  


In the current literature, there is no experimental data. Nalla et al. [5] used the 


uniform-traction Dugdale-zone model to estimate the toughness associated with collagen 


fibrils bridging assuming that the bridging stress on the fibers is 100 MPa, effective area-


fraction of the collagen fibers is 0.15, and the bridging-zone length is 10 μm . Their 


estimation is ~0.08 MPa m  and is on the same order of our results. Figure 6-17 and 


Figure 6-18 depict sliding zone representing the length of fiber that takes part in creating 


the bridging stress. The estimated values of sliding zone with fiber breakage at the 


midpoint of microcrack of crack length 50 μm  are between 0.77 and 3.7 μm  for remote 


stresses considered. They are reasonable and consistent with the results of Yeni’s model 
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[12] in which the estimated lengths are between 0.55 and 7.7 for all bone-types 


considered.  


 In the present study, by taking advantage of cumulative probability density 


function, crack bridging by collagen fibrils in toughening cortical bone is systematically 


investigated. It should be noted that the evolution of fiber breakage is loading history 


dependent in reality; accordingly a more adequate damage evolution law needs to be 


employed to characterize the history-dependent damage evolution behavior. Moreover, 


associated with fiber breakage, the crack propagation analysis needs to be carried out to 


quantify the extent of fracture resistance of cortical bone in the future study.  


 


6.4 Conclusions 


 On the basis of constant-shear model, the fracture behaviors of human cortical 


bone at the lamella level are studied with the framework of linear-elastic fracture 


mechanics combined with multi-scale effective elastic micromechanical model for 


lamella. The effect of collagen fiber breakage is considered by taking advantage of 


cumulative probability function or Weibull distribution. The distribution and evolution of 


fiber bridging stress, crack mouth opening, and stress intensity factor then are analyzed 


by considering the probable fiber breakage. 
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Table 6-1. Set of input parameters for the model. 
Parameters Values Reference 


Collagen elastic modulus 2.9 GPa Sasaki and Odajima [13] 


Collagen Poisson’s ratio 0.3 - 


Apatite crystal bulk modulus 80 GPa Gilmore and Katz [14] 


Apatite crystal shear modulus 45 GPa Gilmore and Katz [14] 
Mineral crystal aspect ratio in 
fibril 40/3 Akkus [15] 


Ultrastructural water and void 
aspect ratio 1 - 


Fibril volume fraction in 
ultrastructure 0.53 Fritsch and Hellmich [16, 


17] 
Apatite crystal volume 
fraction in ultrastructure 0.40 Fritsch and Hellmich [16, 


17] 
Apatite crystal distribution 
parameter 0.75 Lees et al. [18] 


Sasaki et al. [19] 
Crack length 2a  16-160 µm Yeni et al. [12] 


Fibril diameter 0.03-0.2 µm Weiner et al. [20] 
Barber [21] 


Failure strength of the fibril  120 MPa Barber [21] 
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Figure 6-1. A crack of 2a  length, subjected to the remote stress 0σ  is bridged by 
unidirectional fibers. 0δ  represents the maximum crack opening displacement.  
 


 


 


 


 


 


 


 


 


 


 
Figure 6-2. Representative element near the crack faces containing a fiber. 
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Figure 6-3. The effect of far-field stress on the bridging stress without fiber 
breakage.  


Figure 6-4. The effect of far-field stress on the crack mouth opening 
displacement without fiber breakage.  
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Figure 6-5. The effect of far-field stress on the bridging stress with fiber 
breakage (m = 3, τ = 20 MPa).  


Figure 6-6. The effect of far-field stress on the crack mouth opening 
displacement with fiber breakage (m = 3, τ = 20 MPa). 
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Figure 6-7. The effect of far-field stress on the stress intensity factor without 
fiber breakage associated with the shear stress. 


Figure 6-8. The effect of far-field stress on the bridging stress intensity factor 
without fiber breakage associated with the shear stress. 
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Figure 6-9. The effect of far-field stress on the stress intensity factor with fiber 
breakage associated with the shear stress (m = 3). 


Figure 6-10. The effect of far-field stress on the bridging stress intensity factor 
with fiber breakage associated with the shear stress (m = 3). 
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Figure 6-11. The effect of far-field stress on the stress intensity factor (m = 3, 
τ = 20 MPa). 


Figure 6-12. The effect of far-field stress on the bridging stress intensity factor 
(m = 3, τ = 20 MPa). 
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Figure 6-13. The effect of crack length on the stress intensity factor without 
fiber breakage associated with the far-field stress (m = 3, τ = 20 MPa). 


Figure 6-14. The effect of crack length on the bridging stress intensity factor 
without fiber breakage associated with the far-field stress (m = 3, τ = 20 MPa). 
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Figure 6-15. The effect of crack length on the stress intensity factor with fiber 
breakage associated with the far-field stress (m = 3, τ = 20 MPa). 
 


Figure 6-16. The effect of crack length on the bridging stress intensity factor 
with fiber breakage associated with the far-field stress (m = 3, τ = 20 MPa). 
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Figure 6-17. Sliding zone without fiber breakage (m = 3, τ = 20 MPa). 
 


Figure 6-18. Sliding zone with fiber breakage (m = 3, τ = 20 MPa). 
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Chapter 7 


Examination of Mechanical Properties of Human Vertebral 


Cancellous Bone Using Combined Unit Cell Models 


 


7.0 Abstract 


A three-dimensional structural model composed of two different unit cells, which 


have distinct mechanical behavior in the vertical direction, with doubly tapered struts for 


human vertebral cancellous bone is proposed in this chapter. The ensemble-volume and 


orientation averaging procedures are employed to derive the equations. The effects of 


age-related changes in vertebral cancellous bone on effective stiffness and collapse stress 


in both horizontal and vertical directions are studied. The predicted mechanical behaviors 


of human vertebral cancellous bone are generally consistent with experimental 


observations in literature. 


 


7.1 Introduction 


Fractures resulting from minimal trauma can result in significant morbidity and 


mortality in the elderly. These fragility fractures are related to underlying osteoporosis, 


which is the most common type of bone disease. In the USA, 1.5 million osteoporosis-


related fractures occur annually, including 700,000 vertebral fractures, 250,000 distal 


forearm fractures, 250,000 hip fractures and 300,000 fractures of other sites. These 


fractures have contributed to an estimated $5 to $10 billion in health care costs [1]. 
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Studies suggest that the incidence of vertebral fracture has increased 2-4 fold during the 


past 30 years [2, 3]. Understanding the mechanical properties, the relationships between 


structures and the functions of cancellous bone are critical when developing strategies to 


prevent and treat osteoporosis-related fractures.  


It is widely accepted that osteoporosis-related fractures are associated not only 


with the density of the cancellous bone, but also with the cancellous bone structure, 


which changes with age [4, 5]. Many researchers have tried to characterize the structure 


of the vertebral cancellous bone [6, 7] and quantify the effects associated with age [4-6, 


8-12]. Structural models for the mechanical properties of cancellous bone have also been 


developed for capturing the predominant mechanical behaviors [13-21]. For example, 


Kim [20] used a regular hexagonal cellular structure model, comprised of doubly tapered 


struts, to obtain the horizontal Young’s modulus and the horizontal collapse strength of 


vertebral cancellous bone. Sander et al. [21] developed a cellular solid model, composed 


of two idealized unit cell geometries, to investigate the fluid flow characteristics of 


human vertebral cancellous bone. 


Micro-finite element methods have also been used to determine the elastic 


properties, local stress and failure of cancellous bone [22-29]. Compared to other 


structural models, the micro-finite element method can more effectively capture the real 


geometry of the cancellous bone, and may provide more accurate results for specific 


specimens under different loading conditions. However, this method requires a 


significant amount of computer resources, which may not be cost effective or 


mathematically tractable. 
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The purpose of this chapter is to develop a three-dimensional structural model 


composed of two different unit cells, which have distinct mechanical behaviors in the 


vertical directions for human vertebral cancellous bone. The ensemble-volume and 


orientation averaging procedures are employed to derive the equations. This model was 


used to examine the effects of age-related changes in cancellous bone on effective 


stiffness and maximum strength, which are then compared with experimental results. 


 


7.2 Structural Model of Vertebral Cancellous Bone 


The predominant structure of cancellous bone in the vertebra consists of vertical 


and horizontal plates or rods; the exact geometry depends on anatomic site, age, and 


health [30]. This structure can be characterized as cubic lattices of vertical columns and 


horizontal supporting struts with cylindrical symmetry in the central part of the vertebra; 


this structure is accurate for younger individuals as well [4, 16] (Figure 7-1). The two 


idealized unit cells, rectangular and offset rectangular with doubly tapered strut shapes 


(Figure 7-2), are used here to develop the model. 


 


7.2.1 Strut Morphology and Material Properties 


Mosekilde [4, 5] studied the age-related behavior of human vertebral cancellous 


bone structure, describing it in terms of both horizontal and vertical trabeculae mean 


thicknesses as well as the distances between them (Table 7-1). These parameters were 


used to determine the structure of both unit cells as a function of age. 







141 


In our model, we assume that the diameter functions of horizontal and vertical 


struts are 


 ( )
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2 2


0 1 ,   1,2i
i i i
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  
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       (7.1) 


where 0iD  are diameter values at the mid-span ( 0ix = ), ia  are shape parameters and eiL  


are the half strut lengths of horizontal and vertical struts. These functions are continuous 


at the mid-span ( 0ix = ) which is considered to be more realistic for the trabeculae [20].  


In Eq. (7.1), 0iD  can be obtained from Eq. (7.2) assuming that the tapered struts have the 


same volume as the uniform ones. 
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From Eq. (7.1), the cross-sectional area ( )iA x , the second moment of area ( )iI x  


and the plastic section modulus ( )iZ x  for the cross-section of the horizontal and vertical 


struts can be derived as 
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The solid volume fraction, *ρ , of each unit cell may be estimated from the 


following equation when the solid volume fraction is not large, 


 
( ) ( ){ }1 22 2


1 1 1 2 2 20 0*
2
1 2


2 2
L L


A x dx A x dx


L L
ρ


+
≅


∫ ∫
      (7.6) 


Many researchers have tried to obtain the mechanical properties of individual 


trabeculae. There are several different techniques used to determine the Young’s modulus 


of the trabeculae including direct mechanical testing of a single trabecula using direct 


tension tests [31, 32], buckling tests [33, 34], and bending tests [35-39]; ultrasonic 


approaches [32, 40]; and finite element methods [14, 17, 22-26, 28, 38, 39, 41]. The 


results of these tests are summarized in Table 7-2. 


It is often reported that mechanical tests are difficult to conduct and have their 


associated inherent errors due to the small size of the specimens and any artifacts of the 


testing techniques. Consequently, direct tension and bending tests may result in a lower 


measured modulus than the true value [32, 42]. Gibson and Ashby [42] reviewed some of 


the moduli obtained by methods mentioned above and suggested a mean value of 12 GPa 


for the Young’s modulus of the individual trabeculae; this value is assumed for the study 


conducted in this chapter. 


There have been no reported measurements of the strength of the individual 


trabeculae, yσ . Reilly and Burstein [43] and Currey [44] reported that the compressive 


strength of wet compact human bone is about 193 MPa. Since the constituents, 


compositions and elastic properties of compact and trabecular bone are nearly the same in 
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the bone ultrastructure [45, 46], we assume that individual trabeculae also has a 


compressive strength of 193 MPa. 


 


7.2.2 Effective Stiffness of Vertebral Cancellous Bone 


The effective stiffness for the rectangular and offset rectangular unit cells shown 


in Figure 7-2 with horizontal struts (of length 1L ) and vertical struts (of length 2L ), can 


be determined based on the structure, mode of deflection, and material properties of the 


individual trabeculae (cf. Appendix VI). 


The effective Young’s modulus in the inferior-superior direction for the 


rectangular and offset rectangular unit cells, *
3rE  and *


3oE  respectively, are 


 * 2
3 2


1 22r
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L M
=           (7.7) 
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        (7.8) 


where 2M , 1oN  and 1oM  are compliance functions of the struts as follows, ν  is 


Poisson’s ratio of the strut material and k  is a shear correction coefficient, which is about 


10 9  for a circular section. 
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 The mixture rule [21, 47] is adopted here to model the overall effective Young’s 


modulus in the vertical direction, which can be written as 
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  ( )* * *
3 3 31 r oE E Eφ φ= − +          (7.10) 


where φ  is the volume fraction of offset rectangular unit cells, which can be determined 


based on the linear regression relationship between apparent modulus and apparent 


density developed by Kopperdahl and Keaveny [48] 


  * *
3E bρ ρ=               (7.11) 


where 2100 MPab =  and ρ is the tissue mass density, which is assumed to be 2.0 


3g cm  [49]. Combining Eq. (7.10) and (7.11), 


  
* *
3
* *
3 3


r


r o


E b
E E


ρ ρφ −
=


−
             (7.12) 


Orientation averaging procedures, with respect to 3x -axis (cf. Appendix IX), and 


an ensemble-volume averaging scheme are then performed. The results are used to obtain 


the overall effective stiffness of vertebral cancellous bone from which the effective 


Young’s moduli in the horizontal direction *
1E  and *


2E  can be obtained. 


 


7.2.3 Maximum Strength of Vertebral Cancellous Bone 


In this section, we assume that tissue material is rigid and perfectly plastic in 


order to derive the uniaxial plastic collapse stress of vertebral cancellous bone. Due to the 


spatially periodic nature of the unit cell structure, the individual struts deform anti-


symmetrically about their mid-spans [50]. Additionally, the mechanical properties for the 


unit cells can be approximately determined from those of cantilever beams. The critical 
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vertical collapse stress takes place in the offset rectangular unit cells; whereas, the critical 


horizontal collapse stress occurs in the soft direction of the rectangular unit cells.  


Considering the stress 3σ  to be parallel to the 3x  axis will produce an axial force 


3P  on the vertical strut as well as a bending moment on the horizontal strut as shown in 


Figure 7-3. Depending on which strut fails, we can distinguish failure modes into vertical 


strut failures or horizontal strut failures. The bending moment at the plastic hinge section 


of the horizontal strut is 


 3 1


4
oPMλ
λ


=             (7.13) 


where 1oλ  is the effective length after plastic collapse. The yield condition [51] is 


described as 


  
2


1a


y y


M
Z
λ


λ


σ
σ σ


 
+ =  
 


              (7.14) 


where Zλ  is the plastic section modulus at the plastic hinge section of the strut, yσ  is the 


yield stress of the strut material and aσ  is the internal axial stress, which is zero in this 


case. Substituting Eq. (7.13) and 2
3 3 1P Lσ=  into Eq. (7.14), the upper bound on plastic 


collapse stress in the horizontal struts can be written as 


  ( )3 21
1 1


4
y


o


Z
L
λσ σ


λ
=              (7.15) 


When the maximum stress of the vertical strut exceeds the yield stress yσ , the 


vertical strut yields axially. Therefore, the collapse stress in the vertical strut is 
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πσ σ=            (7.16) 


When Eq. (7.16) exceeds Eq. (7.15), failure occurs in the horizontal strut. Note that Eq. 


(7.16) is rarely reached to in compression because of buckling.   


Similarly, under the stress 1σ , parallel to the 1x  direction (Figure 7-4), the 


bending moment and axial stress at the plastic hinge section of the horizontal strut are 


  1 1 sin
2


PMλ
λ θ


=            (7.17) 


  1 cos
a


P
Aλ


θσ =            (7.18) 


where Aλ  is the cross-section area of the horizontal strut at the plastic hinge section. 


Substituting Eq. (7.17), (7.18) and 1 1 1 2 sinP L Lσ θ=  into Eq. (7.14),  


  
2


1
2


1 1 2


2 1
sin


a


y y


Z
L L


λσ σ
σ λ θ σ


  
 = −      


              (7.19) 


Since the contribution of the axial load to yielding is small compared with that from the 


bending moment under uniaxial loading [52-54], the uniaxial horizontal collapse stress 


can be approximated as 


  1 2
1 1 2


2
sin y


Z
L L


λσ σ
λ θ


=           (7.20) 


 The effective length after plastic collapse, λ , can be obtained by taking the 


derivative of the collapse stress with respect to x  in order to find the value of x  for 


which the collapse stress is a maximum. The result is written as follows 
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  22 eLx
aλλ = =            (7.21) 


The corresponding plastic section modulus is 


 3
0


1 3
4 2


Z Dλ =                    (7.22)     


 


7.3 Numerical Simulations and Results 


The effective stiffness, the collapse stress and the relative density for human 


vertebral cancellous bone can be expressed in terms of age and sex by inserting the 


equations listed in Table 7-1 into Eq. (7.1) through (7.12), Eq. (7.15), Eq. (7.16) and Eq. 


(7.20) through (7.22). For material properties of the individual trabeculae, ignoring any 


age-related changes, values of E  = 12 GPa and yσ  = 193 MPa were used.  


Figure 7-5 shows the relationship between age and changes in volume fraction of 


offset unit cells. From age 40 to 80, the volume fraction of offset unit cells increases by 


approximately 20% in all cases, suggesting a potentially important increase in the 


percentage of cancellous bone that experience bending as well as an associated decrease 


in the percentage of cancellous bone that experience compression. The relative density, 


effective stiffness and collapse stress all decrease with age as shown in Figure 7-6 


through Figure 7-15.  


Figure 7-7 and Figure 7-8 show the relationship between age and changes in the 


effective Young’s modulus in the vertical and horizontal directions. Kopperdahl [48] 


suggested that the mean modulus estimated in previous studies [4, 5], where human 
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vertebral bone between platens was mechanically tested, should be 4.5-13.5 times higher 


than the true value if end-artifacts errors were eliminated. Therefore, an amplification 


factor will be used in this study; a value of 6.2 was obtained by matching experimental 


data. 


  When compared with the models of Jensen et al. [17], Overaker [19] and Kim 


[20], the results produced by our model are in reasonably good agreement with associated 


experimental data. The model presented by Jenson et al. [17] was based on the 


rectangular uniform columnar structure, which was too stiff in both directions, and a 


reduced material modulus of 3.8 GPa was used. Regular hexagonal columnar structure 


was the basic approach used in both of the models presented by Overaker [19] and Kim 


[20] to predict the mechanical properties of vertebral cancellous bone. However, the 


hexagonal structure used was too flexible in the in-plane direction, too rigid in the out-of-


plane direction, and resulted in a much smaller relative density. 


The sex-related differences in the relationships between mechanical properties 


and age are illustrated in Figure 7-11 through Figure 7-15. The relative density of male 


vertebral cancellous bone is nearly 18% higher than that of females at age 40 and 12% 


higher at age 80. The effective Young’s modulus and the collapse stress in male vertebral 


cancellous bone are approximately 12 to 34% higher than those of females. These sex-


related differences are emerged from the variations in vertebral cancellous bone structure 


with a higher tendency to perforation of the horizontal supporting struts in females than 


in males [55].  
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7.4 Discussion 


The mechanical properties of human vertebral cancellous bone were examined 


using a combined cellular solid model with doubly tapered struts. In particular, we used 


the orientation averaging procedure to derive the effective stiffness of each unit cell. 


Subsequently, we employed a volume-averaging scheme to calculate the overall effective 


stiffness of human vertebral cancellous bone.  


Tapered strut models are better at matching experimental observations of 


trabecular thickening near the joints and produce more accurate mechanical properties 


than uniform strut models. Ensemble volume and orientation averaging schemes have 


allowed for the combination of two or more unit cells with different mechanical 


behaviors to predict an overall mechanical behavior. Our study shows that not only is 


bending the dominant mechanical behavior in human vertebral cancellous bone, but as 


age increases, so does the percentage of cancellous bone that is controlled by bending. 


In the current literature, there is no model to predict the vertical collapse stress; 


this chapter is the first attempt to do so. In addition, based on sex-related morphology 


information, our model can predict those sex-related differences in the mechanical 


properties. In current literature, other researchers don’t do that.  


Considering data scattering of those experimental results [56], the proposed 


model predictions are in reasonably good agreement with associated experimental data. 


However, the model does not match well in all aspects; this is likely due to several 


reasons. First, the structure of the model is not an exact copy of the cancellous bone 


specimen but rather an idealization representing the vertebral cancellous bone over a span 
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of years. Second, in the experimental data, the age-related increase in distance between 


trabeculae is partly caused by perforations of the trabeculae and subsequent removal of 


the whole trabeculae [17]. However, all increases in inter-trabecular distances in the 


model were assumed to be generated entirely from increases in the distance between 


existing trabeculae. Consequently, the relative density may be underestimated in the 


model. Third, the age-related changes of the human vertebral cancellous bone structure 


were being referenced to experimental data of limited size [4, 5]. More accurate and 


precise regressions from a larger pool of specimens would likely yield better predictions. 


Fourth, the experimental protocols and the specimen size may need to be taken into 


consideration. Depending on the specimen size, the structural element and characteristic 


length may change. 


Our model does not contain any plate-like structures common in cancellous bone 


in other sites of the body. However, the proposed model could be expanded to predict the 


mechanical properties of cancellous bone with a more plate-like structure. The Structural 


Model Index (SMI) introduced by Hildebrand, T. and P. Ruegsigger [57] can be easily 


incorporated into our model. The SMI can be used to quantify the characteristic form of a 


three-dimensional structure in terms of the volume fraction of plates and rods composing 


the structure.  


  


7.5 Conclusions 


To investigate the effects of age-related changes in human vertebral cancellous 


bone on mechanical behaviors, an analytical model is proposed. This model is composed 
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of two idealized unit cells with doubly tapered struts and incorporates the ensemble-


volume and orientation averaging procedures. The predicted mechanical behaviors of 


human vertebral cancellous bone are generally consistent with experimental observations 


in literature. This model could serve as a theoretical framework for cancellous bone and 


provide assistance in understanding the connection between structural changes and 


biomechanical competence.  
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Table 7-1. The age-related changes in human vertebral cancellous bone structure based 
on the linear regression equations developed by Mosekilde [4, 5] 
Parameters Relationships (Age in years) 


Males [5]  
Horizontal trabeculae mean thickness   ( )1 1.20 Age 205.2D mµ = − × + , 0.72r = −     


Vertical trabeculae mean thickness   ( )2 0.494 Age 239.7D mµ = − × + , 0.28r = −    


Distance between horizontal trabeculae   ( )2 10.39 Age 411.7L mµ = × + , 0.65r =    


Distance between vertical trabeculae  ( )1 7.49 Age 402.4L mµ = × + , 0.72r =   


Females [5]  
Horizontal trabeculae mean thickness   ( )1 0.80 Age 171.9D mµ = − × + , 0.67r = −    


Vertical trabeculae mean thickness   ( )2 0.057 Age 196.2D mµ = × + , 0.035r =   


Distance between horizontal trabeculae   ( )2 16.01 Age 161.4L mµ = × + , 0.72r =   


Distance between vertical trabeculae  ( )1 8.89 Age 332.9L mµ = × + , 0.66r =  


Both [4]  
Horizontal trabeculae mean thickness   ( )1 1.03 Age 189D mµ = − × + , 0.71r = −   


Vertical trabeculae mean thickness   ( )2 0.14 Age 208D mµ = × + , 0.06r =   


Distance between horizontal trabeculae   ( )2 13.74 Age 288L mµ = × + , 0.79r =    


Distance between vertical trabeculae  ( )1 6.74 Age 456L mµ = × + , 0.75r =      
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Table 7-2. Young’s modulus of human trabeculae from various sources 
Reference Type of bone Method Young’s modulus 


(GPa) 
Runkle and Pugh [33] Distal femur Buckling 8.69 (±3.17) dry 


Townsend et al. [34] Proximal tibia Inelastic buckling unmachined 11.38 wet 


   14.13 dry 


Williams and Lewis [14] Proximal tibia Compression test with 2D 
FEM 1.30 


Kuhn et al. [35] Fresh frozen tibia 3-point bending machined 3.17 (±1.50) 


Mente and Lewis [38] Dried femur, fresh tibia Cantilever bending with 2D 
FEM 5.30 (±2.60) 


Ashman and Rho [40] Femur Ultrasonic test 13.0 (±1.50) 


Choi et al. [36] Tibia 3-point bending machined 4.59 (±1.60) 


Kuhn et al. [37] Iliac crests 3-point bending machined 3.81 


Mente and Lewis [39] Dried femur, fresh tibia Cantilever bending with 3D 
FEM 7.80 (±5.40) 


Jensen et al. [17] Vertebra 3D FEM 3.80a 


Choi and Goldstein [58] Tibia 4-point bending machined 5.35 (±1.36) wet 


Rho et al. [32] Tibia Tension test 10.4 (±3.50) dry 


  Ultrasonic test 14.8 (±1.40) wet 


Van Rietbergen et al. [22] Proximal tibia 3D Micro-FEM 2.23~10.10 (5.91) 


Overaker et al. [19] Vertebra Idealized model 12.0 a 


Silva and Gibson [41] Vertebra 2D FEM 0.10 a 


Hou et al. [23] Vertebra 3D Micro-FEM 5.70±1.60 


Ladd et al. [24] Vertebra 3D Micro-FEM 6.60 


Homminga et al. [28] Vertebra 3D Micro-FEM 5.0 


Kim and Al-Hassani [20] Vertebra Idealized model 12.0 a 


Van Rietbergen et al. [59] Femur 3D Micro-FEM 15.0 a 


Bini et al. [60] Femur Tension and compression test 1.41~1.89 


Sander et al. [21] Vertebra Idealized model 18.0 


Present Study Vertebra Idealized model 12.0 a 
a Young’s modulus of trabeculae used for an idealized model 
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Figure 7-1. Lumbar vertebra in (a) superior and (b) lateral view. 3x  is oriented in the 
inferior-superior direction and is the principal loading direction. (c) A detail view of 
human vertebral cancellous bone.  
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Figure 7-2. Representative idealized unit cells – (a) rectangular and (b) offset rectangular 
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Figure 7-3. Forces, moments and plastic hinges imposed on the struts due to the stress 


3σ  in the 3x  direction for the offset rectangular unit cell. 
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Figure 7-4. Forces, moments and plastic hinges imposed on the struts due to the stress 


1σ  in the 1x  direction for the rectangular unit cell in the soft direction. 
 


 


 


 


 


 


 


 


 


 


 
Figure 7-5. Volume fraction of offset unit cells as a function of age for the current model. 
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Figure 7-6. Relative density(%) of vertebral cancellous bone as a function of age. 
 


 


 


 


 


 


 


 


 


 
 
Figure 7-7. Effective vertical Young’s modulus as a function of age. 
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Figure 7-8. Effective horizontal Young’s modulus as a function of age. 
 


 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-9. The vertical collapse stress as a function of age.  
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Figure 7-10. The horizontal collapse stress as a function of age.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-11. Sex-related differences in the relative density as a function of age. 
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Figure 7-12. Sex-related differences in the effective vertical stiffness as a function of age. 
 


 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-13. Sex-related differences in the effective horizontal stiffness as a function of 
age. 
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Figure 7-14. Sex-related differences in the vertical collapse stress as a function of age. 
 


 


 


 


 


 


 


 
 


 
 
 
Figure 7-15. Sex-related differences in the horizontal collapse stress as a function of age. 
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7.6 Appendix VIII: Elastic Models of Rectangular Unit Cells 


In this section, the effective stiffness for the rectangular and offset rectangular 


unit cells as shown in Figure 7-2, which have horizontal struts (of length 1L ) and vertical 


struts (of length 2L ) is derived. Due to the spatially periodic nature of unit cell structure, 


the individual struts deform anti-symmetrically about their mid-spans [50]. Consequently, 


there is no resultant moment across the strut section at the mid-span, and the mechanical 


properties for the unit cells can be approximately determined from those of cantilever 


beams. 


The total strain energy U  in a strut of length L  due to a bending moment M , 


axial force R , and shear force V  can be expressed as 


 
( ) ( )


2 2 22 2 2


0 0 0( )
L L LM R kVU dx dx dx


EI x EA x GA x
= + +∫ ∫ ∫         (7.23) 


where E , G , and ν  are Young’s modulus, shear modulus, and Poisson’s ratio of the 


material, k  is a shear correction coefficient depending on the strut cross section, and 


( )A x  and ( )I x  are the cross-sectional area and the second moment of the area 


associated with the cross section of the strut. 


 


7.6.1 Effective Stiffness of Offset Rectangular Unit Cells 


The remote stress 1σ  along the 1x  direction produces a force 1 2P  on the 


horizontal strut, as shown in Figure 7-16, resulting in a total strain energy stored in the 


unit cell as 
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( )
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U dx P M
EA x


= =∫         (7.24) 


The displacement 1δ  of the unit cell in the 1x  direction due to the force 1P  is obtained 


from Eq. (7.24)  


  1
1 1 1


1


2 o
U PM
P


δ ∂
= =
∂


          (7.25) 


The strain of the unit cell in the 1x  direction is given by 


  1 1 1
1


1 1


2 oPM
L L
δε = =           (7.26) 


From Figure 7-16, we have 1 1 1 22P L Lσ= , and by this with combining Eq. (7.26), the 


effective Young’s modulus parallel to 1x  is  


  * 1
1


1 2 1


1
4o


o


E
L M


σ
ε


= =            (7.27) 


 The stress 3σ  parallel to the 3x  produces an axial load 3P  on the vertical strut and 


transverse load 3 2P  on the horizontal strut as shown in Figure 7-17. For 3 2V P=  and 


( )M x Vx= , the strain energy in the horizontal struts is given by 


  ( ) ( )2
3 3 1 11


2 1o oU P N k Mν= + +           (7.28) 


and the strain energy in the vertical struts is given by 


  ( ) 2
3 3 22


2U P M=            (7.29) 


The total displacement 3δ  of the unit cell in the 3x  direction due to the force 3P  is 


obtained from Eq. (7.28) and (7.29), 
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U P N k M M
P


δ ν∂
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      (7.30) 


The strain parallel to 3x  direction is 


  
( )3 1 1 23


3
2 2


2 1 2
2


o oP N k M M
L L


νδε
+ + +  = =       (7.31) 


From Figure 7-17, we have 2
3 3 1P Lσ= , and by combining this with Eq. (7.31), the 


effective Young’s modulus parallel to 3x  is  
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       (7.32) 


 The remote shear stress 13τ  produces a force 1F  on the vertical strut, and 1 2F  


and 3F  on the horizontal strut, as shown in Figure 7-18, where the force 1F  and 2F  are 


  
2


1 13 1


3 13 1 2


F L
F L L


τ
τ


=
=


              (7.33) 


The effective shear deformation includes three parts, which are (1) the bending and shear 


deformation of the vertical struts, (2) the rigid-body rotation of the vertical struts due to 


the bending and shear deformation of the horizontal struts, and (3) the axial deformation 


of the horizontal struts. For 1V F= , from Eq. (7.23), the bending and shear deformation 


of the vertical strut is 


  [ ]2
1 13 1 2 22 2 (1L N k Mδ τ ν= + + )          (7.34) 


where 


  
( )


2
22


2 0
2


L xN dx
EI x


= ∫          (7.35) 
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For 1 2R F=  and 3V F= , from Eq. (7.23), the bending and shear deformation and axial 


deflection of the horizontal strut are 


  ( )2 13 1 2 1 12 2 1o oL L N k Mδ τ ν= + +            (7.36) 


  2
3 13 1 1oL Mδ τ=            (7.37) 


Therefore, the rigid-body rotation of the vertical strut due to the bending and shear 


deformation of the horizontal strut is obtained by the following equation 


  ( )22
2 13 2 1 1


1


4 2 1
2 o o


L L N k M
L


δ τ ν= + +             (7.38) 


From Eq. (7.34), (7.37) and (7.38), the shear strain is given by 


  
[ ] ( )2 2 2


13 1 2 2 13 2 1 1 13 1 1
13


2


2 2 (1 4 2 1o o oL N k M L N k M L M
L


τ ν τ ν τ
γ


+ + ) + + + +  =
  (7.39)


resulting in the shear modulus 


  
[ ] ( )


* 2
13 2 2 2


1 2 2 2 1 1 1 12 2 (1 4 2 1o
o o o
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L N k M L N k M L Mν ν
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    (7.40) 


 The remote stress 2σ  parallel to 2x  produces an axial force 2 2P  on the 


horizontal strut as shown in Figure 7-19. For 2 2R P= , from Eq. (7.23), the strain is 


  2
2 2 2 1


1


2 L M
L
δε σ= =           (7.41) 


where  


  
( )


1 2


1 0
1


1L
M dx


EA x
= ∫          (7.42) 
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 Combining 2 1 2 22P L L σ=  and Eq. (7.41), the effective Young’s modulus parallel 


to 2x  is 


  * 2
2


2 2 1


1
2oE


L M
σ
ε


= =             (7.43) 


The remote shear stress 12τ  produces a force 1 2F  in the 1x  direction on the 


horizontal struts perpendicular to 1x - 3x  plane, and a force 2 5F , which is derived by 


assuming top and bottom struts have the same transverse deformations in the 2x  direction 


and ignoring the shear term, in the 2x  direction on the top horizontal struts perpendicular 


to 2x - 3x  plane as shown in Figure 7-20. The forces 1F  and 2F  are written in terms of the 


remote shear stress 12τ  as 


  1 2 12 1 22F F L Lτ= =            (7.44)  


Upon the substitution of 1 2V F= , the deflection of the horizontal struts in the 1x  


direction is obtained from Eq. (7.23) 


  ( )1 1 1 12 1F N k Mδ ν= + +             (7.45) 


where 


  
( )


1
22


1 0
1


L xN dx
EI x


= ∫           (7.46) 


For 2 5V F= , the deflection of the horizontal struts in the 2x  direction can also be 


obtained as 
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  ( )2 2 1 1
2 4 1
5 5


F N k Mδ ν = + +  
         (7.47) 


From Eq. (7.45) and (7.47), the shear strain is obtained 


  
( ) ( )1 1 1 2 1 11


12
1


2 42 1 1
5 5


F N k M F N k M


L


ν ν
γ


 + + + + +     =      (7.48) 


resulting in the shear modulus 


   
( )


*
12


2 1 2 1


1
14 28 1
5 5


oG
L N k L Mν


=
+ +


        (7.49) 


The shear stress 23τ  produces a force 3 2F  in the 3x  direction on the horizontal 


struts, a force 2F  in the 2x  direction on the vertical struts and a force 2 2F on the 


horizontal struts as shown in Figure 7-21. The forces 2F  and 3F  are written in terms of 


the remote shear stress 23τ  as 


  
2


2 23 1


3 23 1 22
F L
F L L


τ
τ


=
=


           (7.50) 


For 3 2V F= , from Eq. (7.23), the bending and shear deformation of the horizontal strut 


in the 3x  direction is 


  ( )3 3 1 12 1F N k Mδ ν= + +            (7.51) 


In a similar manner, the bending and shear deformation of the vertical and horizontal 


struts in the 2x  direction is 


  ( ) ( )2 2 2 2 1 12 4 1 2 1o oF N k M N k Mδ ν ν= + + + + +         (7.52) 
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From Eq. (7.50), (7.51) and (7.52), the shear strain is obtained as 


  3 2
23


1 2L L
δ δγ = +           (7.53) 


resulting in the shear modulus   


( ) ( ) ( )
* 2
23 2 2


2 1 1 1 2 2 1 12 2 1 2 4 1 2 1o
o o


LG
L N k M L N k M N k Mν ν ν


=
+ + + + + + + +      


   (7.54) 


 The transverse strains due to the force in the 3x  direction are negligible compared 


with the strain parallel to the 3x  direction, and vice versa. Therefore, the Poisson’s ratios 


are assumed 


  * * * *
13 31 23 32 0ν ν ν ν≅ ≅ ≅ ≅          (7.55) 


Furthermore, *
12ν  and *


21ν  are also assumed to be zero in this coordinate configuration. 


 From these effective elastic constants, the effective stiffness matrix is given by 


  


23 32 21 31 23 31 21 32


2 3 2 3 2 3


12 13 32 31 13 32 31 12


3 1 3 1 3 1


31 12 23 23 13 21 12 21


1 2 1 2 1 2


23


31


12


1 0 0 0


1 0 0 0


1 0 0 0


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


E E E E E E


E E E E E E


E E E E E E
G


G
G


ν ν ν ν ν ν ν ν


ν ν ν ν ν ν ν ν


ν ν ν ν ν ν ν ν


− + + 
 ∆ ∆ ∆
 


+ − + 
 ∆ ∆ ∆
 


+ + −=  
 ∆ ∆ ∆ 
 
 
 
  


C      (7.56) 


where 


  12 21 23 32 31 13 12 23 31


1 2 3


1 2
E E E


ν ν ν ν ν ν ν ν ν− − − −
∆ =          (7.57) 
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7.6.2 Effective Stiffness of Rectangular Unit Cells 


The effective elastic constants of rectangular unit cells in the two soft directions 


are given in [61] and reorganized as 


 
( )


* *
1 2


2 1 1 1


1
2 1


E E
L N M k Mν


= =
+ + +  


           (7.58) 


 ( )
( )


* * 1 1 1
12 21


1 1 1


2 1
1


N M k M
N M k M


ν
ν ν


ν
− + +


= =
+ + 2 +


         (7.59) 


 *
12


2 1


1
4


G
L M


=             (7.60) 


 * 2
3 2


1 22
LE


L M
=            (7.61) 


 * * * *
13 23 31 32 0ν ν ν ν≅ ≅ ≅ ≅           (7.62) 


 
( ) ( ){ }


* * 2
13 23 2 2


2 1 1 1 2 22 2 1 2 1
LG G


L N k M L N k Mν ν
= =


+ + + + +      
   (7.63) 
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7.7 Appendix IX: Transformation of Elastic Constants 


Consider two orthogonal coordinate systems, ( 1x , 2x , 3x ) and ( 1x′ , 2x′ , 3x′ ), where 


one is rotated about their common origin with respect to the other. The relationship 


between these two systems is 


 
1 1 1 1 1


2 2 2 2 2


3 3 3 3 3


x l m n x
x l m n x
x l m n x


′    
    ′ =       ′      


          (7.64) 


The transformation of the stiffness matrix C  can be expressed as 


 1 1
T=′C T CT             (7.65) 


where 1T  is a 6 6×  transformation matrix given by 


  


2 2 2
1 1 1 1 1 1 1 1 1
2 2 2
2 2 2 2 2 2 2 2 2
2 2 2
3 3 3 3 3 3 3 3 3


1
2 3 2 3 2 3 2 3 3 2 2 3 3 2 2 3 3 2


1 3 1 3 1 3 1 3 3 1 1 3 3 1 1 3 3 1


1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1


2 2 2
2 2 2
2 2 2
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
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 + + +
+ + +


T











 
 


    (7.66) 
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7.8 Appendix X: Criterion for Elastic Collapse and Plastic Collapse 


 The critical buckling stress ( crσ ) of an individual trabecula can be described by 


the Euler buckling equation: 


  
2


2


4
cr


E
Lk
D


πσ =
 
 
 


                (7.67) 


where k  is a constant of approximately 0.5 for a column with fixed ends.  For failure to 


occur by buckling, the critical buckling stress ( crσ ) must be less than the compressive 


strength of the trabecula ( yσ ). Therefore, the minimum slenderness ratio for buckling can 


be estimated by using the following equation: 


   
( )


2


24 y


L E
D k


π
σ


>            (7.68)  


The minimum slenderness ratio for buckling can be estimated by substituting the 


modulus ( E ) and strength ( yσ ) of the trabecular into Eq. (7.68), which have a value of 


12GPa and 193MPa, respectively. Therefore, if the slenderness ratio is greater than 12.39, 


the trabeculae will buckle. In this study, both slenderness ratios of horizontal and vertical 


trabeculae are smaller than 9.3, thus the plastic collapse dominates.  


 Gibson and Ashby [54] also present a criterion for open-cell foams to evaluate if 


it is possible for elastic collapse to precede plastic collapse as 


  
2


* 36 y


E
σ


ρ  
<  


 
           (7.69) 
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Upon substituting yσ  and E  into Eq. (7.69), elastic collapse precedes plastic collapse 


when the relative density is below 0.0093. As shown in Figure 7-6, the relative densities 


in this study are all above 0.0093 and therefore the plastic collapse controls. 
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Figure 7-16. Free-body diagram of the struts due to the stress 1σ  in the 1x  direction 
 


 


 


 


 


 


 


 


 


 


 


Figure 7-17. Free-body diagram of the struts due to the stress 3σ  in the 3x  direction 
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Figure 7-18. Free-body diagram of the struts due to the shear stress 13τ   
 


 


 


 


 


 


 


 


 


 


 


Figure 7-19. Free-body diagram of the struts due to the stress 2σ  in the 2x  direction 
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Figure 7-20. Free-body diagram of the struts due to the shear stress 12τ   
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Figure 7-21. Free-body diagram of the struts due to the shear stress 23τ     
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Chapter 8 


Summary and Future Work 


 


8.1     Summary 


In this thesis, we aim to develop robust multi-level micromechanical constitutive 


models for human bone tissues. In Chapter 3, the hierarchical microstructure of human 


bones is considered, and a multi-scale micromechanical homogenization scheme is 


proposed. At a scale of several hundred nanometers, collagen molecules which are 


organized into staggered schemes form a contiguous matrix where hydroxyapatite 


crystals grow and embed themselves, building up the mineralized collagen fibrils. The 


proposed framework predicts that the pattern of mineralization and the shape of the 


mineral crystals serve to improve the mechanical function of collagen fibrils along the 


longitudinal axis. The numerical results in comparison to the experimental data from 


nanoindentation tests reflect a predictive precision and demonstrate the capability of the 


current micromechanical model to simulate the key behavior at this scale. 


At a scale of 3-10 µm, the extracellular bone material is represented as 


mineralized collagen fibril inclusions embedded in a foam of extrafibrillar mineral 


crystals. In addition, the proposed model takes the orientations of mineralized collagen 


fibrils into account [2]. The homogenization scheme for the extrafibrillar mineral foam is 


validated by the experimental data of enamel’s mechanical properties and an equation 


from the study of Lees [3]. Enamel has very limited amount of collagen tissue; as a result, 
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the underestimation of elastic properties of the extrafibrillar mineral foam due to the 


presence of collagen is minimized. At a scale above the ultrastructure, where osteocyte 


lacunae are embedded in extracellular bone material matrix, the extravascular bone 


material is observed. The proposed constitutive model is in agreement with the 


experimental data. 


In Chapter 4, the effect of collagen fibril orientations on the elastic properties of 


bone lamellae or lamellar units are investigated. The effective anisotropic linear elastic 


properties of bone lamellae of lamellar units are obtained based on the multiscale 


homogenized model proposed in Chapter 3 combined with a micromechanical framework 


of layered composite and fibril orientation patterns observed in experiments. Several 


fibrillar orientation patterns within the lamellae are considered. In particular, comparison 


and validation between our micromechanical model based on the single layer fiber 


orientation and nanoindentation experimental results in two orthogonal directions is 


presented.  


Chapter 5 is devoted to investigate the effects of accumulation of diffuse damage 


in human bone upon the material properties of lamellae. A three-parameter formulation is 


adopted to characterize the evolution of density of microcracks. An effective elastic 


micromechanical damage formulation for bone with evolutionary matrix cracking is then 


proposed based on Ju and Tseng’s micromechanical damage formulation [4, 5]. It is 


demonstrated that microdamage exists in bone in vivo, accumulates with age and 


contributes to the degradation of bone’s material properties. The predicted mechanical 
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behaviors of the lamellae are consistent with the experimental observations in the 


literature.  


In Chapter 6, on the basis of constant-shear model, the fracture behaviors of 


human cortical bone at the lamella level are studied with the framework of linear-elastic 


fracture mechanics combined with multi-scale effective elastic micromechanical model 


for lamella. By taking advantage of cumulative probability function or Weibull 


distribution, the effect of collagen fiber breakage is simulated. The distribution and 


evolution of fiber bridging stress, crack mouth opening, and stress intensity factor then 


are analyzed by considering the probable fiber breakage. Crack bridging by collagen 


fibrils in toughening cortical bone was first time investigated systematically. 


A three-dimensional structural model composed of two different unit cells, which 


have distinct mechanical behavior in the vertical direction, with doubly tapered struts for 


human vertebral cancellous bone is proposed in Chapter 7. The ensemble-volume and 


orientation averaging procedures are employed to derive the equations. The effects of 


age-related changes in vertebral cancellous bone on effective stiffness and collapse stress 


in both horizontal and vertical directions are first time studied simultaneously. The 


predicted mechanical behaviors of human vertebral cancellous bone are generally 


consistent with experimental observations in literature. This model could serve as a 


theoretical framework for cancellous bone and provide assistance in understanding the 


connection between structural changes and biomechanical competence. 
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8.2     Future Work 


The complex hierarchical structure of bone has prevented us from having a 


complete, quantitative understanding of how it deforms and fractures. In addition, the 


plasticity and toughening mechanisms of bone are active at the various length scales. 


However, the advances in experimental techniques and better computational tools are 


allowing us to have more rigorous analysis of bone behaviors. By understanding of how 


micro- and macro-scale features control bone’s physiology, we may find new treatment 


for bone-related diseases.  


Among the critical issues unresolved, most importantly, we still lack rigorous 


models that link structures at the various length scales with properties – in particular, the 


role of nano- and micro- structural arrangements of bone in its macroscopic behavior. 


Finding this link is an opportunity to bridge the gaps not only in our understanding of 


bone, but also in the variety of other biological and natural materials that contain similar 


hierarchical structures.  


Other major challenges include carrying out measurements at multiple length and 


time scales and developing models that capture the dynamical properties of bone [6]. 


Even greater challenge is to describe bone as a living material that remodels, adapts, and 


responds to a variety of biochemical and mechanical factors. Consequently, an 


interdisciplinary approach may be necessary to forge a path to better quantitative models 


of the bone material.  


The proposed tasks for the next phase of this research are summarized as follows: 


1. Investigate mode-dependent crack-evolution micromechanical damage models: 
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Microcrack growth in bone appears to be self-limiting in tension, but less 


restricted in compression, indicating strain mode-dependent crack extension [7, 8]. 


Microcracks formed from cyclic tension have decreasing growth rate with increasing 


length, and typically arrest in less than 10000 cycles [7]. By contrast, microcracks 


produced under compression tend to be long linear cracks, indicative of more uninhibited 


growth (Figure 8-1). Our micromechanical damage models should be refined based on 


these experimental observations. 


 


2. Explore combined multi-level micromechanical modeling and numerical simulation 


via FEM 


It will be worthwhile to combine the proposed micromechanical damage models, 


featuring precise anisotropic stiffness characterization for extravascular bone materials, 


with the finite element methodology. In the current and past literatures over the last 


several decades, human bone materials are usually approximated as isotropic materials; 


this isotropic approximation generates severe limitations upon the simulation results of 


FEM.  


 


3. Investigate uncracked-ligament bridging at the microstructural level 


At the microstructural level, crack bridging by collagen fibrils and uncracked-


ligament bridging has been identified as potent toughening mechanisms. We have already 


studied crack bridging by collagen fibrils systematically in Chapter 6, however, how the 
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uncracked ligaments form is as yet unclear. Advanced and detailed experimental 


observations are required to clarify this physical mechanism. 


 


4. Expand our combined unit-cell model by incorporating SMI index  


Our model proposed in Chapter 7 does not contain any plate-like structures 


common in cancellous bone in other sites of the body. However, the model could be 


expanded to predict the mechanical properties of cancellous bone with a more plate-like 


structure. The Structural Model Index (SMI) introduced by Hildebrand, T. and P. 


Ruegsigger [9] can be easily incorporated into our model. The SMI can be used to 


quantify the characteristic form of a three-dimensional structure in terms of the volume 


fraction of plates and rods composing the structure.  


 


5. Propose multi-level micromechanical damage models for the progressive fracture and 


healing of human bone tissues. 


Various fracture criteria have been proposed for human bone tissues, and many 


experiments have been performed to validate those criteria. However, there is a lack of 


agreement among different studies. Some authors [10] suggest that strain-based failure 


theories are better than stress-based ones, while other researchers indicate the opposite 


[11]. On the other hand, the multi-level progressive fracture and healing of human bones 


are important topics of research in biomechanics. Since there is experimental evidence 


that tissue differentiation is mechanically dependent [12], the micromechanical 
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approaches may be suitable for capturing the healing mechanism of human bones under 


various mechanical loading and bone microstructures. 
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Figure 8-1. The laser scanning confocal microscope images of murine cortical bone 


subjected to fatigue under four-point bending. In the compressive region (a), long 


linear microcracks are present. In the tensile region (b), there is a cloudy network of 


tiny cracks. [1] 


(a) (b) 
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 In this thesis, we aim to develop robust multi-level micromechanical 


constitutive models for human bone tissues. First, the hierarchical microstructure of 


human bones is considered, and a multi-scale micromechanical homogenization scheme 


is proposed in Chapter 3. The proposed framework predicts that the pattern of 


mineralization and the shape of the mineral crystals serve to improve the mechanical 


function of collagen fibrils along the longitudinal axis. The numerical results in 


comparison to the experimental data from nanoindentation tests reflect a predictive 


precision and demonstrate the capability of the current micromechanical model to 


simulate the key behavior at this scale. 
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 The effects of collagen fibril orientations upon the elastic properties of bone 


lamellae or lamellar units are studied in the following chapter. The homogenized 


anisotropic elastic properties of bone lamellae or lamellar units are estimated using an 


innovative method: multiscale homogenized model of ultrastructure combined with a 


micromechanical framework of layered composite for lamellar units and fibril orientation 


patterns observed in the experiments. Five fibril orientation patterns are compared in this 


study – the orthogonal and twisted plywood pattern, the five sublayer pattern, an X-ray 


diffraction-based pattern, and a microscopy observed pattern. The model results show the 


deviation of fibrillar orientation from the anatomical axis (osteon axis) and demonstrate 


that the elastic mechanical behaviors of bone lamellae vary with different fibril 


orientation patterns. The proposed method opens new possibilities in the exploitation of 


fibrillar orientation data and provides a better understanding of the mechanical properties 


of bone lamellae. 


 The effects of accumulation of diffuse damage in human bone upon the 


material properties of lamellae are investigated in Chapter 5. A three-parameter 


formulation is adopted to characterize the evolution of density of microcracks. An 


effective elastic micromechanical damage formulation for bone with evolutionary matrix 


cracking is then proposed based on Ju and Tseng’s micromechanical damage formulation. 


It is demonstrated that microdamage exists in bone in vivo, accumulates with age and 


contributes to the degradation of bone’s material properties. 


 In Chapter 6, on the basis of constant-shear model, the rising R-curve behavior 


of human cortical bone at the lamella level is studied with the framework of linear-elastic 
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fracture mechanics combined with multi-scale effective elastic micromechanical model 


for lamella. By taking advantage of cumulative probability function or Weibull 


distribution, the effect of collagen fiber breakage is simulated. The distribution and 


evolution of fiber bridging stress, crack mouth opening, and stress intensity factor then 


are analyzed by considering the probable fiber breakage. Crack bridging by collagen 


fibrils in toughening cortical bone was first time investigated systematically. 


 A three-dimensional structural model composed of two different unit cells, 


which have distinct mechanical behavior in the vertical direction, with doubly tapered 


struts for human vertebral cancellous bone is proposed in Chapter 7. The 


ensemble-volume and orientation averaging procedures are employed to derive the 


equations. The effects of age-related changes in vertebral cancellous bone on effective 


stiffness and collapse stress in both horizontal and vertical directions are studied. The 


predicted mechanical behaviors of human vertebral cancellous bone are generally 


consistent with experimental observations in the literatures. 
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