Skip to main content
eScholarship
Open Access Publications from the University of California

Voltage-driven, local, and efficient excitation of nitrogen-vacancy centers in diamond.

  • Author(s): Labanowski, Dominic
  • Bhallamudi, Vidya Praveen
  • Guo, Qiaochu
  • Purser, Carola M
  • McCullian, Brendan A
  • Hammel, P Chris
  • Salahuddin, Sayeef
  • et al.
Abstract

Magnetic sensing technology has found widespread application in a diverse set of industries including transportation, medicine, and resource exploration. These uses often require highly sensitive instruments to measure the extremely small magnetic fields involved, relying on difficult-to-integrate superconducting quantum interference devices and spin-exchange relaxation-free magnetometers. A potential alternative, nitrogen-vacancy (NV) centers in diamond, has shown great potential as a high-sensitivity and high-resolution magnetic sensor capable of operating in an unshielded, room-temperature environment. Transitioning NV center-based sensors into practical devices, however, is impeded by the need for high-power radio frequency (RF) excitation to manipulate them. We report an advance that combines two different physical phenomena to enable a highly efficient excitation of the NV centers: magnetoelastic drive of ferromagnetic resonance and NV-magnon coupling. Our work demonstrates a new pathway that combine acoustics and magnonics that enables highly energy-efficient and local excitation of NV centers without the need for any external RF excitation and, thus, could lead to completely integrated, on-chip, atomic sensors.

Main Content
Current View