- Main
Viscosities of the Baryon-Rich Quark-Gluon Plasma from Beam Energy Scan Data
Published Web Location
https://doi.org/10.1103/physrevlett.132.072301Abstract
This work presents the first Bayesian inference study of the (3+1)D dynamics of relativistic heavy-ion collisions and quark-gluon plasma viscosities using an event-by-event (3+1)D hydrodynamics+hadronic transport theoretical framework and data from the Relativistic Heavy Ion Collider Beam energy scan program. Robust constraints on initial state nuclear stopping and the baryon chemical potential-dependent shear viscosity of the produced quantum chromodynamic (QCD) matter are obtained. The specific bulk viscosity of the QCD matter is found to exhibit a preferred maximum around sqrt[s_{NN}]=19.6 GeV. This result allows for the alternative interpretation of a reduction (and/or increase) of the speed of sound relative to that of the employed lattice-QCD based equation of state for net baryon chemical potential μ_{B}∼0.2(0.4) GeV.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-