- Main
Fuel reduction and electricity consumption impact of different charging scenarios for plug-in hybrid electric vehicles
Abstract
Plug-in hybrid electric vehicles (PHEVs) consume both gasoline and grid electricity. The corresponding temporal energy consumption and emission trends are valuable to investigate in order to fully understand the environmental benefits. The 24-h energy consumption and emission profile depends on different vehicle designs, driving, and charging scenarios. This study assesses the potential energy impact of PHEVs by considering different charging scenarios defined by different charging power levels, locations, and charging time. The region selected for the study is the South Coast Air Basin of California. Driving behaviors are derived from the National Household Travel Survey 2009 (NHTS 2009) and vehicle parameters are based on realistic assumptions consistent with projected vehicle deployments. Results show that the reduction in petroleum consumption is significant compared to standard gasoline vehicles and the ability to operate on electricity alone is crucial to cold start emission reduction. The benefit of higher power charging on petroleum consumption is small. Delayed and average charging are better than immediate charging for home, and non-home charging increases peak grid loads. © 2011 Elsevier B.V. All rights reserved.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-