Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Response to Neoadjuvant Targeted Therapy in Operable Head and Neck Cancer Confers Survival Benefit.

Abstract

Purpose

Neoadjuvant targeted therapy provides a brief, preoperative window of opportunity that can be exploited to individualize cancer care based on treatment response. We investigated whether response to neoadjuvant therapy during the preoperative window confers survival benefit in patients with operable head and neck squamous cell carcinoma (HNSCC).

Patients and methods

A pooled analysis of treatment-naïve patients with operable HNSCC enrolled in one of three clinical trials from 2009 to 2020 (NCT00779389, NCT01218048, NCT02473731). Neoadjuvant regimens consisted of EGFR inhibitors (n = 83) or anti-ErbB3 antibody therapy (n = 9) within 28 days of surgery. Clinical to pathologic stage migration was compared with disease-free survival (DFS) and overall survival (OS) while adjusting for confounding factors using multivariable Cox regression. Circulating tumor markers validated in other solid tumor models were analyzed.

Results

92 of 118 patients were analyzed; all patients underwent surgery following neoadjuvant therapy. Clinical to pathologic downstaging was more frequent in patients undergoing neoadjuvant targeted therapy compared with control cohort (P = 0.048). Patients with pathologic downstage migration had the highest OS [89.5%; 95% confidence interval (CI), 75.7-100] compared with those with no stage change (58%; 95% CI, 46.2-69.8) or upstage (40%; 95% CI, 9.6-70.4; P = 0.003). Downstage migration remained a positive prognostic factor for OS (HR, 0.22; 95% CI, 0.05-0.90) while adjusting for measured confounders. Downstage migration correlated with decreased circulating tumor markers, SOX17 and TAC1 (P = 0.0078).

Conclusions

Brief neoadjuvant therapy achieved pathologic downstaging in a subset of patients and was associated with significantly better DFS and OS as well as decreased circulating methylated SOX17 and TAC1.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View