Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Effect of fabrication processes on BaTiO3 capacitor properties

Published Web Location

https://doi.org/10.1063/5.0203014Creative Commons 'BY' version 4.0 license
Abstract

There is an increasing desire to utilize complex functional electronic materials such as ferroelectrics in next-generation microelectronics. As new materials are considered or introduced in this capacity, an understanding of how we can process these materials into those devices must be developed. Here, the effect of different fabrication processes on the ferroelectric and related properties of prototypical metal oxide (SrRuO3)/ferroelectric (BaTiO3)/metal oxide (SrRuO3) heterostructures is explored. Two different types of etching processes are studied, namely, wet etching of the top SrRuO3 using a NaIO4 solution and dry etching using an Ar+-ion beam (i.e., ion milling). Polarization-electric-field hysteresis loops for capacitors produced using both methods are compared. For the ion-milling process, it is found that the Ar+ beam can introduce defects into the SrRuO3/BaTiO3/SrRuO3 devices and that the milling depth strongly influences the defect level and can induce a voltage imprint on the function. Realizing that such processing approaches may be necessary, work is performed to ameliorate the imprint of the hysteresis loops via ex situ “healing” of the process-induced defects by annealing the ferroelectric material in a barium-and-oxygen-rich environment via a chemical-vapor-deposition-style process. This work provides a pathway for the nanoscale fabrication of these candidate materials for next-generation memory and logic applications.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View