Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Quantitative Ranking of Ligand Binding Kinetics with a Multiscale Milestoning Simulation Approach

Abstract

Efficient prediction and ranking of small molecule binders by their kinetic ( kon and koff) and thermodynamic ( Δ G) properties can be a valuable metric for drug lead optimization, as these quantities are often indicators of in vivo efficacy. We have previously described a hybrid molecular dynamics, Brownian dynamics, and milestoning model, Simulation Enabled Estimation of Kinetic Rates (SEEKR), that can predict kon's, koff's, and Δ G's. Here we demonstrate the effectiveness of this approach for ranking a series of seven small molecule compounds for the model system, β-cyclodextrin, based on predicted kon's and koff's. We compare our results using SEEKR to experimentally determined rates as well as rates calculated using long time scale molecular dynamics simulations and show that SEEKR can effectively rank the compounds by koff and Δ G with reduced computational cost. We also provide a discussion of convergence properties and sensitivities of calculations with SEEKR to establish "best practices" for its future use.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View