Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria

Abstract

Purpose

Breath stacking dyssynchrony generates higher tidal volumes than intended, potentially increasing lung injury risk in acute respiratory distress syndrome (ARDS). Lack of validated criteria to quantify breath stacking dyssynchrony contributes to its under-recognition. This study evaluates performance of novel, objective criteria for quantifying breath stacking dyssynchrony (BREATHE criteria) compared to existing definitions and tests if neuromuscular blockade eliminates high-volume breath stacking dyssynchrony in ARDS.

Methods

Airway flow and pressure were recorded continuously for up to 72 h in 33 patients with ARDS receiving volume-preset assist-control ventilation. The flow-time waveform was integrated to calculate tidal volume breath-by-breath. The BREATHE criteria considered five domains in evaluating for breath stacking dyssynchrony: ventilator cycling, interval expiratory volume, cumulative inspiratory volume, expiratory time, and inspiratory time.

Results

The observed tidal volume of BREATHE stacked breaths was 11.3 (9.7-13.3) mL/kg predicted body weight, significantly higher than the preset volume [6.3 (6.0-6.8) mL/kg; p < 0.001]. BREATHE identified more high-volume breaths (≥2 mL/kg above intended volume) than the other existing objective criteria for breath stacking [27 (7-59) vs 19 (5-46) breaths/h; p < 0.001]. Agreement between BREATHE and visual waveform inspection was high (raw agreement 96.4-98.1 %; phi 0.80-0.92). Breath stacking dyssynchrony was near-completely eliminated during neuromuscular blockade [0 (0-1) breaths/h; p < 0.001].

Conclusions

The BREATHE criteria provide an objective definition of breath stacking dyssynchrony emphasizing occult exposure to high tidal volumes. BREATHE identified high-volume breaths missed by other methods for quantifying this dyssynchrony. Neuromuscular blockade prevented breath stacking dyssynchrony, assuring provision of the intended lung-protective strategy.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View