Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Adropin and insulin resistance: Integration of endocrine, circadian, and stress signals regulating glucose metabolism

Published Web Location

https://doi.org/10.1002/oby.23249
Abstract

Dysregulation of hepatic glucose production (HGP) and glucose disposal leads to hyperglycemia and type 2 diabetes. Hyperglycemia results from the declining ability of insulin to reduce HGP and increase glucose disposal, as well as inadequate ß-cell compensation for insulin resistance. Hyperglucagonemia resulting from reduced suppression of glucagon secretion by insulin contributes to hyperglycemia by stimulating HGP. The actions of pancreatic hormones are normally complemented by peptides secreted by cells distributed throughout the body. This regulatory network has provided new therapeutics for obesity and type 2 diabetes (e.g., glucagon-like peptide 1). Other peptide hormones under investigation show promise in preclinical studies. Recent experiments using mice and nonhuman primates indicate the small secreted peptide hormone adropin regulates glucose metabolism. Here, recent expression profiling data indicating hepatic adropin expression increases with oxidative stress and declines with fasting or in the presence of hepatic insulin resistance and how adropin interacts with the pancreatic hormones, insulin, and glucagon to modulate glycemic control are discussed.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View