Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted metabolomic approach

Abstract

Background

Advances in untargeted metabolomic technologies have great potential for insight into adverse metabolic effects underlying exposure to environmental chemicals. However, important challenges need to be addressed, including how biological response corresponds to the environmental chemical burden in different target tissues.

Aim

We performed a pilot study using state-of-the-art ultra-high-resolution mass spectrometry (UHRMS) to characterize the burden of lipophilic persistent organic pollutants (POPs) in metabolic tissues and associated alterations in the plasma metabolome.

Methods

We studied 11 adolescents with severe obesity at the time of bariatric surgery. We measured 18 POPs that can act as endocrine and metabolic disruptors (i.e. 2 dioxins, 11 organochlorine compounds [OCs] and 5 polybrominated diphenyl ethers [PBDEs]) in visceral and subcutaneous abdominal adipose tissue (vAT and sAT), and liver samples using gas chromatography with UHRMS. Biological pathways were evaluated by measuring the plasma metabolome using high-resolution metabolomics. Network and pathway enrichment analysis assessed correlations between the tissue-specific burden of three frequently detected POPs (i.e. p,p'-dichlorodiphenyldichloroethene [DDE], hexachlorobenzene [HCB] and PBDE-47) and plasma metabolic pathways.

Results

Concentrations of 4 OCs and 3 PBDEs were quantifiable in at least one metabolic tissue for > 80% of participants. All POPs had the highest median concentrations in adipose tissue, especially sAT, except for PBDE-154, which had comparable average concentrations across all tissues. Pathway analysis showed high correlations between tissue-specific POPs and metabolic alterations in pathways of amino acid metabolism, lipid and fatty acid metabolism, and carbohydrate metabolism.

Conclusions

Most of the measured POPs appear to accumulate preferentially in adipose tissue compared to liver. Findings of plasma metabolic pathways potentially associated with tissue-specific POPs concentrations merit further investigation in larger populations.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View