Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Vitamin D and calcium regulation of epidermal wound healing

Abstract

Wound healing is essential for survival. This is a multistep process involving a number of different cell types. In the skin wounding triggers an acute inflammatory response, with the innate immune system contributing both to protection against invasive organisms and to triggering the invasion of inflammatory cells into the wounded area. These cells release a variety of cytokines and growth factors that stimulate the proliferation and migration of dermal and epidermal cells to close the wound. In particular, wounding activates stem cells in the interfollicular epidermis (IFE) and hair follicles (HF) to proliferate and send their progeny to re-epithelialize the wound. β-catenin and calcium signaling are important for this activation process. Mice lacking the VDR when placed on a low calcium diet have delayed wound healing. This is associated with reduced β-catenin transcriptional activity and proliferation in the cells at the leading edge of wound closure. These data suggest that vitamin D and calcium signaling are necessary components of the epidermal response to wounding, likely by regulating stem cell activation through increased β-catenin transcriptional activity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View