Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

PAR2 antagonist C391

Published Web Location

https://doi.org/10.1111/bph.13238
Abstract

Background and purpose

Proteinase-activated receptor-2 (PAR2) is a GPCR linked to diverse pathologies, including acute and chronic pain. PAR2 is one of the four PARs that are activated by proteolytic cleavage of the extracellular amino terminus, resulting in an exposed, tethered peptide agonist. Several peptide and peptidomimetic agonists, with high potency and efficacy, have been developed to probe the functions of PAR2, in vitro and in vivo. However, few similarly potent and effective antagonists have been described.

Experimental approach

We modified the peptidomimetic PAR2 agonist, 2-furoyl-LIGRLO-NH2 , to create a novel PAR2 peptidomimetic ligand, C391. C391 was evaluated for PAR2 agonist/antagonist activity to PAR2 across Gq signalling pathways using the naturally expressing PAR2 cell line 16HBE14o-. For antagonist studies, a highly potent and specific peptidomimetic agonist (2-aminothiazo-4-yl-LIGRL-NH2 ) and proteinase agonist (trypsin) were used to activate PAR2. C391 was also evaluated in vivo for reduction of thermal hyperalgesia, mediated by mast cell degranulation, in mice.

Key results

C391 is a potent and specific peptidomimetic antagonist, blocking multiple signalling pathways (Gq -dependent Ca2+ , MAPK) induced following peptidomimetic or proteinase activation of human PAR2. In a PAR2-dependent behavioural assay in mice, C391 dose-dependently (75 μg maximum effect) blocked the thermal hyperalgesia, mediated by mast cell degranulation.

Conclusions and implications

C391 is the first low MW antagonist to block both PAR2 Ca2+ and MAPK signalling pathways activated by peptidomimetics and/or proteinase activation. C391 represents a new molecular structure for PAR2 antagonism and can serve as a basis for further development for this important therapeutic target.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View