Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Ultrafine V2O5-anchored 3D N-doped carbon nanocomposite with augmented dual-enzyme mimetic activity for evaluating total antioxidant capacity

Abstract

Total antioxidant capacity (TAC) can be evaluated by detecting the content of antioxidants, such as ascorbic acid, based on the enzyme-mimetic activity of nanomaterials. Herein, we fabricated a 3D-V2O5/NC nanocomposite using a self-templating strategy, which achieved ultrafine particles (∼2.5 nm), a porous carbon layer, large specific surface area (152.4 m2/g), N-doping and heterogeneous structure. The strong catalytic activity of 3D-V2O5/NC resulted from the integrated effect between the ultrafine structure of V2O5 nanoparticles and the 3D porous nitrogen-doped carbon framework, effectively increasing the number of active sites. This nanozyme presented a higher catalytic activity than its components or precursors in the nanocomposite (e.g., VN/NC, NC, V2O5, and VO2/g-C3N4). ROS scavenging experiments confirmed that the dual enzyme-like activity of 3D-V2O5/NC (catalase-like and oxidase-like) resulted from their co-participation of ‧O2-, h+ and ‧OH, among which ‧O2- played a crucial role in the catalytic color reaction. By virtue of the 3D-V2O5/NC nanoenzyme activity and TMB as a chromogenic substrate, the mixed system of 3D-V2O5/NC + TMB + H2O2 provided a low detection limit (0.03 μM) and suitable recovery (93.0-109.5%) for AA. Additionally, a smartphone-based colorimetric application was developed employing "Thing Identify" software to evaluate TAC in beverages. The colorimetric sensor and smartphone-detection platform provide a better or comparable analytical performance for TAC assessment in comparison to commercial ABTS test kits. The newly developed smartphone-based colorimetric platform presents several prominent advantageous, such as low cost, simple/rapid operation, and feasibility for outdoor use.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View