Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Concentration of random graphs and application to community detection

Creative Commons 'BY' version 4.0 license
Abstract

Random matrix theory has played an important role in recent work on statistical network analysis. In this paper, we review recent results on regimes of concentration of random graphs around their expectation, showing that dense graphs concentrate and sparse graphs concentrate after regularization. We also review relevant network models that may be of interest to probabilists considering directions for new random matrix theory developments, and random matrix theory tools that may be of interest to statisticians looking to prove properties of network algorithms. Applications of concentration results to the problem of community detection in networks are discussed in detail.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View