Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Tilsotolimod Exploits the TLR9 Pathway to Promote Antigen Presentation and Type 1 IFN Signaling in Solid Tumors: A Multicenter International Phase I/II Trial (ILLUMINATE-101).

Abstract

PURPOSE: Tilsotolimod is an investigational synthetic Toll-like receptor 9 (TLR9) agonist that has demonstrated antitumor activity in preclinical models. The ILLUMINATE-101 phase I study explored the safety, dose, efficacy, and immune effects of intratumoral (it) tilsotolimod monotherapy in multiple solid tumors. PATIENTS AND METHODS: Patients with a diagnosis of refractory cancer not amenable to curative therapies received tilsotolimod in doses escalating from 8 to 32 mg into a single lesion at weeks 1, 2, 3, 5, 8, and 11. Additional patients with advanced malignant melanoma were enrolled into an expansion cohort at the 8 mg dose. Objectives included characterizing the safety, establishing the dose, efficacy, and immunologic assessment. Blood samples and tumor biopsies of injected and noninjected lesions were obtained at baseline and 24 hours after treatment for immune analyses. RESULTS: Thirty-eight and 16 patients were enrolled into the dose escalation and melanoma expansion cohorts, respectively. Deep visceral injections were conducted in 91% of patients. No dose-limiting toxicities (DLT) or grade 4 treatment-related adverse events were observed. Biopsies 24 hours after treatment demonstrated an increased IFN pathway signature and dendritic cell maturation. Immunologic profiling revealed upregulation of IFN-signaling genes and modulation of genes for checkpoint proteins. In the dose escalation cohort, 12 (34%) of 35 evaluable patients achieved a best overall response rate (ORR) of stable disease (SD), whereas 3 (19%) of 16 evaluable patients in the melanoma cohort achieved stable disease. CONCLUSIONS: Overall, tilsotolimod monotherapy was generally well tolerated and induced rapid, robust alterations in the tumor microenvironment. See related commentary by Punekar and Weber, p. 5007.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View