- Main
VUV Photoionization Study of the Formation of the Simplest Polycyclic Aromatic Hydrocarbon: Naphthalene (C10H8)
Published Web Location
https://doi.org/10.1021/acs.jpclett.8b01020Abstract
The formation of the simplest polycyclic aromatic hydrocarbon (PAH), naphthalene (C10H8), was explored in a high-temperature chemical reactor under combustion-like conditions in the phenyl (C6H5)-vinylacetylene (C4H4) system. The products were probed utilizing tunable vacuum ultraviolet light by scanning the photoionization efficiency (PIE) curve at a mass-to-charge m/ z = 128 (C10H8+) of molecules entrained in a molecular beam. The data fitting with PIE reference curves of naphthalene, 4-phenylvinylacetylene (C6H5CCC2H3), and trans-1-phenylvinylacetylene (C6H5CHCHCCH) indicates that the isomers were generated with branching ratios of 43.5±9.0 : 6.5±1.0 : 50.0±10.0%. Kinetics simulations agree nicely with the experimental findings with naphthalene synthesized via the hydrogen abstraction-vinylacetylene addition (HAVA) pathway and through hydrogen-assisted isomerization of phenylvinylacetylenes. The HAVA route to naphthalene at elevated temperatures represents an alternative pathway to the hydrogen abstraction-acetylene addition (HACA) forming naphthalene in flames and circumstellar envelopes, whereas in cold molecular clouds, HAVA synthesizes naphthalene via a barrierless bimolecular route.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-