Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Sex-Specific Stress-Related Behavioral Phenotypes and Central Amygdala Dysfunction in a Mouse Model of 16p11.2 Microdeletion.

Abstract

BACKGROUND: Substantial evidence indicates that a microdeletion on human chromosome 16p11.2 is linked to neurodevelopmental disorders, including autism spectrum disorder (ASD). Carriers of this deletion show divergent symptoms besides the core features of autism spectrum disorder, such as anxiety and emotional symptoms. The neural mechanisms underlying these symptoms are poorly understood. METHODS: We used mice heterozygous for a deletion allele of the genomic region corresponding to the human 16p11.2 microdeletion locus (i.e., 16p11.2 del/+ mice) and their sex-matched wild-type littermates for the study and examined their anxiety-related behaviors, auditory perception, and central amygdala circuit function using behavioral, circuit tracing, and electrophysiological techniques. RESULTS: Mice heterozygous for a deletion allele of the genomic region corresponding to the human 16p11.2 microdeletion locus (i.e., 16p11.2 del/+ mice) had sex-specific anxiety-related behavioral and neural circuit changes. Specifically, we found that female, but not male, 16p11.2 del/+ mice showed enhanced fear generalization-a hallmark of anxiety disorders-after auditory fear conditioning and displayed increased anxiety-like behaviors after physical restraint stress. Notably, such sex-specific behavioral changes were paralleled by an increase in activity in central amygdala neurons projecting to the globus pallidus in female, but not male, 16p11.2 del/+ mice. CONCLUSIONS: Together, these results reveal female-specific anxiety phenotypes related to 16p11.2 microdeletion syndrome and a potential underlying neural circuit mechanism. Our study therefore identifies previously underappreciated sex-specific behavioral and neural changes in a genetic model of 16p11.2 microdeletion syndrome and highlights the importance of investigating female-specific aspects of this syndrome for targeted treatment strategies.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View