- Main
A Compact Model of Nanoscale Ferroelectric Capacitor
Abstract
— In this brief, we present a compact model of nanoscale ferroelectric (FE) capacitors. We first use the phase-field simulation to study the polarization switching of very small FE capacitor that contains only a few grains. We show that at higher applied voltage, the entire grain undergoes a single-domain-like switching, but at lower applied voltage, the domain wall growth mechanism dominates due to the difference between the domain wall energies of bulk and defect nuclei. To create a compact model that includes this voltage dependence, we use a time-dependent domain switching model for each discrete grain with empirical modifications capturing the two different switching mechanisms. In addition, a voltage-dependent dielectric model is included to represent the nonlinear capacitance of the FE capacitor. We verify this compact model by fitting the results of phase-field modeling results with excellent agreement.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-