Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Selfing Promotes Spread and Introgression of Segregation Distorters in Hermaphroditic Plants

Abstract

Segregation distorters (SDs) are genetic elements that distort the Mendelian segregation ratio to favor their own transmission and are able to spread even when they incur fitness costs on organisms carrying them. Depending on the biology of the host organisms and the genetic architecture of the SDs, the population dynamics of SDs can be highly variable. Inbreeding is considered an effective mechanism for inhibiting the spread of SDs in populations, and can evolve as a defense mechanism against SDs in some systems. However, we show that inbreeding in the form of selfing in fact promotes the spread of SDs acting as pollen killers in a toxin-antidote system in hermaphroditic plants by two mechanisms: (i) By reducing the effective recombination rate between killer and antidote loci in the two-locus system and (ii) by increasing the proportion of SD alleles in individual flowers, rather than in the general gene-pool. We also show that in rice (Oryza sativa L.), a typical hermaphroditic plant, all molecularly characterized SDs associated with pollen killing were involved in population hybridization and have introgressed across different species. Paradoxically, these loci, which are associated with hybrid incompatibility and can be thought of as Bateson-Dobzhansky-Muller incompatibility loci are expected to reduce gene-flow between species, in fact cross species boundaries more frequently than random loci, and may act as important drivers of introgression.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View