Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Impact of Nano- and Mesoscales on Macroscopic Cation Conductivity in Perfluorinated-Sulfonic-Acid Membranes

Abstract

A mean-field local-density theory is outlined for ion transport in perfluorinated-sulfonic-acid (PFSA) membranes. A theory of molecular-level interactions predict nanodomain and macroscale conductivity. The effects of solvation, dielectric saturation, dispersion forces, image charge, finite size, and confinement are included in a physically consistent 3D-model domain geometry. Probability-distribution profiles of aqueous cation concentration at the domain-scale are in agreement with atomistic simulations using no explicit fitting parameters. Measured conductivities of lithium-, sodium-, and proton-form membranes with equivalent weights of 1100, 1000, and 825 g/mol(SO3) validate the macroscale predictions using a single-value mesoscopic fitting parameter. Cation electrostatic interactions with pendant sulfonate groups are the largest source of migration resistance at the domain-scale. Tortuosity of ionically conductive domains is the largest source of migration resistance at the macroscale. Our proposed transport model is consistent across multiple length scales. We provide a compelling methodology to guide material design and optimize performance in energy-conversion applications of PFSA membranes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View