Skip to main content
Download PDF
- Main
Scalable Association Rule Learning Algorithm for Very Large Dataset
- Li, Haosong
- Advisor(s): Sheu, Phillip
Abstract
Many algorithms have been proposed to solve the association rule learning problem. However, most of them suffer from the problem of scalability either because of unacceptable time complexity or tremendous memory usage, especially when the dataset is enormous and the minimum support (minsup) is low. This paper introduces a new approach that follows the divide-and-conquer paradigm, which can exponentially reduce both the time complexity and memory usage, even on a single machine.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%