- Main
Simultaneously Improved Efficiency and Stability in All-Polymer Solar Cells by a P–i–N Architecture
Published Web Location
https://doi.org/10.1021/acsenergylett.9b01459Abstract
All-polymer organic solar cells offer exceptional stability. Unfortunately, the use of bulk heterojunction (BHJ) structure has the intrinsic challenge to control the side-chain entanglement and backbone orientation to achieve sophisticated phase separation in all-polymer blends. Here, we revealed that the P-i-N structure can outperform the BHJ ones with a nearly 50% efficiency improvement, reaching a power conversion efficiency approaching 10%. This P-i-N structure can also provide an enhanced internal electric field and remarkably stable morphology under harsh thermal stress. We have further demonstrated generality of the P-i-N structure in several other all-polymer systems. Considering the adjustable polymer molecular weight and solubility, the P-i-N device structure can be more beneficial for all-polymer systems. With the design of more crystalline polymers, the antiquated P-i-N structure can further show its strength in all-polymer systems by simplified morphology control and improved carrier extraction, becoming a more favorite device structure than the dominant BHJ structure.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-