Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Decoding diffuse light scattering dynamics in layered tissues: path length versus fluctuation time scale.

Published Web Location

https://doi.org/10.1364/ol.507162
Abstract

Dynamic multiple light scattering (DMLS) has found numerous applications, including soft matter physics and biomedical optics. Yet biological tissues may have complex internal geometries, presenting a challenge for noninvasive measurements. Deciphering laminar dynamics is crucial to accurately interpret tissue or organ physiology. Seminal DMLS work noted that one can probe deeper layers indirectly by analyzing light fluctuations on shorter time scales. Recent technologies have enabled probing deeper layers directly by analyzing fluctuations at longer path lengths. The following question arises: are the indirect and direct approaches synergistic or redundant? Here, by adding an optical switch to path-length-filtered interferometric diffusing wave spectroscopy, we experimentally address this question in the context of a forearm occlusion study. We find that both approaches afford better distinction of light scattering dynamics in layered tissues than either approach alone. This motivates further development of methods that integrate both decorrelation time scale and light path length to probe layered tissues.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View