Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Efficient polarization of high-angular-momentum systems

Abstract

We present a novel technique of efficient optical pumping of open, high-angular-momentum systems. The method combines two well-established approaches of population manipulation (conventional optical pumping and coherent population transfer), offering the ability to achieve higher population of a sublevel with the highest or lowest quantum number m (the "end state") than obtainable with either of the techniques. To accomplish this task, we propose to use coherent-population-transfer technique (e.g., adiabatic fast passage) to arrange the system in such a way that spontaneously emitted photon (conventional optical pumping) carries away more entropy than in conventional schemes. This enables reduction of a number of spontaneous decays Nsd required to pump the system with the total angular momentum J from Nsd = J decays in the conventional scheme to Nsd ≤ log2(2J) decays in the proposed scheme. Since each spontaneous-emission event is potentially burdened with a loss of population (population is transferred to a dark state), this enables increasing population accumulated in the "end state", which is important for many applications.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View