Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Multiscale simulation-guided design of enzyme bioconjugates with enhanced catalysis.

Abstract

Biopolymer-scaffold modification is widely used to enhance enzyme catalysis. A central challenge is predicting the effects of scaffold position on enzyme properties. Here, we use a computational-experimental approach to develop a model for the effects of DNA scaffold position on enzyme kinetics. Using phosphotriesterase modified with a 20bp dsDNA, we demonstrate that conjugation position is as important as the scaffolds chemistry and structure. Multiscale simulations predict the effective substrate concentration increases close to the scaffold, which has μM-strength binding to the substrate. Kinetic analysis shows that the effective concentration that the scaffold provides is best utilized when positioned next to, but not blocking, the active site. At ~5Å distance between scaffold and active site a 7-fold increase in k cat /K M was achieved. A model that accounts for the substrate concentration as well PTE-DNA geometry accurately captures the kinetic enhancements, enabling prediction of the effect across a range of DNA positions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View