Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Hepatic heparan sulfate is a master regulator of hepcidin expression and iron homeostasis in human hepatocytes and mice.

Abstract

Hepcidin is a liver-derived peptide hormone that controls systemic iron homeostasis. Its expression is regulated by the bone morphogenetic protein 6 (BMP6)/SMAD1/5/8 pathway and by the proinflammatory cytokine interleukin 6 (IL6). Proteoglycans that function as receptors of these signaling proteins in the liver are commonly decorated by heparan sulfate, but the potential role of hepatic heparan sulfate in hepcidin expression and iron homeostasis is unclear. Here, we show that modulation of hepatic heparan sulfate significantly alters hepcidin expression and iron metabolism both in vitro and in vivo Specifically, enzymatic removal of heparan sulfate from primary human hepatocytes, CRISPR/Cas9 manipulation of heparan sulfate biosynthesis in human hepatoma cells, or pharmacological manipulation of heparan sulfate-protein interactions using sodium chlorate or surfen dramatically reduced baseline and BMP6/SMAD1/5/8-dependent hepcidin expression. Moreover inactivation of the heparan sulfate biosynthetic gene N-deacetylase and N-sulfotransferase 1 (Ndst1) in murine hepatocytes (Ndst1 f/f AlbCre +) reduced hepatic hepcidin expression and caused a redistribution of systemic iron, leading to iron accumulation in the liver and serum of mice. Manipulation of heparan sulfate had a similar effect on IL6-dependent hepcidin expression in vitro and suppressed IL6-mediated iron redistribution induced by lipopolysaccharide in vivo These results provide compelling evidence that hepatocyte heparan sulfate plays a key role in regulating hepcidin expression and iron homeostasis in mice and in human hepatocytes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View