Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Tuning In-Plane Magnetic Anisotropy and Interfacial Exchange Coupling in Epitaxial La2/3Sr1/3CoO3/La2/3Sr1/3MnO3 Heterostructures

Published Web Location

https://pubs.acs.org/doi/10.1021/acsami.3c10376
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

Controlling the in-plane magnetocrystalline anisotropy and interfacial exchange coupling between ferromagnetic (FM) layers plays a key role in next-generation spintronic and magnetic memory devices. In this work, we explored the effect of tuning the magnetocrystalline anisotropy of La2/3Sr1/3CoO3 (LSCO) and La2/3Sr1/3MnO3 (LSMO) layers and the corresponding effect on interfacial exchange coupling by adjusting the thickness of the LSCO layer (tLSCO). The epitaxial LSCO/LSMO bilayers were grown on (110)o-oriented NdGaO3 (NGO) substrates with a fixed LSMO (top layer) thickness of 6 nm and LSCO (bottom layer) thicknesses varying from 1 to 10 nm. Despite the small difference (∼0.2%) in lattice mismatch between the two in-plane directions, [001]o and [11̅0]o, a pronounced in-plane magnetic anisotropy was observed. Soft X-ray magnetic circular dichroism hysteresis loops revealed that for tLSCO ≤ 4 nm, the easy axes for both LSCO and LSMO layers were along the [001]o direction, and the LSCO layer was characterized by magnetically active Co2+ ions that strongly coupled to the LSMO layer. No exchange bias effect was observed in the hysteresis loops. In contrast, along the [11̅0]o direction, the LSCO and LSMO layers displayed a small difference in their coercivity values, and a small exchange bias shift was observed. As tLSCO increased above 4 nm, the easy axis for the LSCO layer remained along the [100]o direction, but it gradually rotated to the [11̅0]o direction for the LSMO layer, resulting in a large negative exchange bias shift. Therefore, we provide a way to control the magnetocrystalline anisotropy and exchange bias by tuning the interfacial exchange coupling between the two FM layers.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item