Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Transgene-derived overexpression of miR-17-92 in CD8+ T-cells confers enhanced cytotoxic activity

Abstract

MicroRNAs (miRs) play important roles in regulation of a variety of cell functions, including immune responses. We have previously demonstrated that miR-17-92 expression in T-cells enhances Th1 phenotype and provides a long-term protection against glioblastoma when co-expressed as a transgene in T-cells along with a chimeric antigen receptor. To further elucidate the function of miR-17-92 in tumor antigen-specific CD8(+) T-cells, we generated transgenic (Tg) mice in which CD8(+) T-cells overexpress transgene-derived miR-17-92 under the lck promoter as well as T-cell receptor specific for human gp10025-33 (Pmel-1) (miR-17-92/Pmel-Tg). CD8(+) T-cells from miR-17-92/Pmel-Tg mice demonstrated enhanced interferon (IFN)-γ production and cytotoxicity in response to the cognate antigen compared with those from control Pmel-Tg mice without the transgene for miR-17-92. In addition, miR-17-92/Pmel-Tg mouse-derived CD8(+)CD44(+) T-cells demonstrated increased frequencies of cells with memory phenotypes and IFN-γ production. We also found that miR-17-92/Pmel-Tg-derived CD8(+) T-cells expressed decreased levels of transforming growth factor (TGF)-β type II receptor (TGFBR2) on their surface, thereby resisting against suppressive effects of TGF-β1. Our findings suggest that engineering of tumor antigen-specific CD8(+) T-cells to express miR-17-92 may improve the potency of cancer immunotherapy.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.