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Abstract 

An interface between a microwave spectrometer and . computer is 
described. It consists of three CAMAC modules and uses standard 
CAMAC crate and controller. The hardware, in conjunctior .vith appro­
priate software routines was designed to synchronize measurements, to 
collect data, and to control the microwave frequency and other experi­
mental parameters. 

Introduction 

Microwave spectrometer data are ideally suited to numerical calculation, 
but sheer quantities of data involved make the task quite time consuming. 
It is evident that it would be highly desirable to automate a spectrometer 
for this job. This automation can also improve the sensitivity, resolution 
and accuracy of the spectrometer through digital signal processing techniques. 

A prime consideration with microwave spectrometers is how to improve 
the signal-to-noise ratio in order to increase their capability for handling 
very weak microwave absorptions. In conventional spectrometers, (1) this is 
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done by employing Stark-effect modulation, phase sensitive tuned detectors 

and an output noise filter. A second method of signal-to-noise improve­

ment is digital filtering which is simply mathematical curve smoothing 

applied to data after it has been taken. A final method is the averaging 

of repeated scans. By automating the instrument, much more precise 

signal averaging and digital filtering is possible. A computer controlled 

microwave spectrometer was described by White (2) which demonstrated some 

of these advantages. It automatically searched for and recorded all 

major resonance lines found during a scan and computed their frequencies 

and intensities. 

For a Microwave Spectroscopy Program at the Lawrence Berkeley Labor­

atory, a spectrometer for the detection of gaseous pollutants has been 

developed, (3-3). The spectrometer operates at frequencies in the vicinity 

of 70 GHz and incorporates a Fabry-Perot resonator (9,10) and uses superheterodyne 

detection to obtain high sensitivity at low microwave power levels. For 

the reasons just discussed, the spectrometer was automated with the aid of a 

PDP 11/34 computer. A description of the interface between the spectrometer 

and t.hr computer follows. The software routines are also briefly explained. 

CAMAC Hardware 

The electronic hardware constructed to provide the interfacing between 

the spectrometer and the computer consists of three CAMAC (11) modules. These 

are shown together with the other major components of the system in Fig. 1. 

The modules were mounted in a Standard Engineering model PCS/a half-size CAMAC 

crate together with a Borer model 1533 Controller and additional modules of 

.ommercial design not described in this report. Figure 2 shows the front 

panel of the CAMAC system. 
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The three modules constructed consist of a synthesizer controller 

(MS SCU) to control the frequency of a General Radio model 1062 frequency 

synthesizer, an 8 channel analog-to-digital converter (MS ADC) to collect 

analog data and a real time clock (MS RTC) to provide timing information. 

The design of each of these modules is described below. 

Real Time Clock (MS RTC) 

The Real Time Clock provides synchronization of analog measurements. 

This double width module contains logic designed to proudce trains of 

programmable time periods, during which the spectrometer system performs its 

various functions. 

The cycle of periods starts with an interval, Tl and is followed by 

a sequence of N programmable T2 periods. During Tl, experimental parameters, 

including the microwave frequency, are changed. Within each T2 period the 

data is collected, using the ADC module, and stored in the computer memory. 

The unit is provided with its own crystal controlled clock which generates 

a 1 MHz timing signal. The length of Tl is determined by software by means 

of register Tl, which can be loaded with up to 24 bits. The T2 and N 

registers are 16 bits wide. All three counters are down-counting and their 

overflow causes self-reloading, so it is not necessary to load registers 

every cycle. The module can also be programmed for si"gle cycle operation. 

At the end of each complete cycle, the RTC module generates a LAM (look-

at-me) signal thereby enabling the computer to respond during the coming Tl 

interval. Upon completion of the appropriate action, the computer clears 

the LAM, providing a handshake. If the LAM is still set at the end of Tl, 

the clock enters a Tl overrun mode and will wait until the handshake is 

completed before proceeding. 
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The Tl interval can be interrupted by a software command and continued 
again. The status of Tl can be tested to determine whether the module is in 
a Tl period or not. A normal mode of operation is shown in Fig. 3. At 
the beginning of each T2, a strobe is generated to initiate conversion in 
the ADC module. Also an internal flag is set. Upon completion of the 
conversion, the ADC module, returning the EOC signal (or a software command) 
clears the flag, completing the handshake. If either one is missing before 
the time the next T2 should start, it will cause an overrun condition to 
exist and the RTC will wait in its T2 overrun mode. Operation resumes only 
after the overrun is cleared 

Figure 4 shows a block diagram of the module illustrating the major 
components. The CAMAC function codes controlling the module are tabulated 
in Table I. 

Analog-to-Digital Converter (MS ADC) 
The ADC unit is built around a Datel Model MDAS-8D Data Acquisition 

System featuring 8 multiplexed differential channels, sample and hold, and 
a 12 bit ADC (see Fig. 5). The total acquisition and conversion time is 
20 us. The system is wired for a random addressing mode. 

The input signal amplitude is +10V (each channel). Output (12 bits) 
two's complement binary is extended to 16 bits to produce a signed (2's 
compl.) number. All functions can be controlled manually or via CAMAC 
commands. These commands are shown in Table II. 

MS SCU-Synthesizer Control Unit 
The Synthesizer Control Unit is shown as a block diagram in Fig. 6. 

To control the frequency synthesizer (Gen Rad 1062) 9 digits of BCD informa­
tion are needed. The necessary information for this unit is presented in 
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Table I 
RTC -. CAMAC Functi 

COMMAND 
N.F(0).A(0) 
N.F(10).A(0).S2 
F.F(24).A(0).S1 
N.F(8).A(0) 
N.F(16).A(1).S1 
N.F(16).A(2).S1 
N.F(16).A(0).S1 
N.F(9).A(0).S2 
C.S2 
N.F(10).A(0).S2 
Z.S2 
N.F(24).A(1).S1 

N.F(26).A(1).S1 
N.F(27).A(0) 

N.F(26).A(1) 
N.F(25).A(0)S1 
N.F(25).A(0)S1 
N.F(25).A(2)S1 
N.F(11).A(0)S2 

Codes 

ACTION 
Read N Register (16 bits) 
Enable LAM 
Disable LAM 
Test LAM 
Load (overwrite) Tl Register (24 bits) 
Load (overwrite) T2 Register (16 bits) 
Load (Overwrite) N Register (16 bits) 
Reset RTC Except LAM Latch 
Reset RTC Except LAM Latch 
Reset or Clear LAM Latch 
Initialize RTC 
Disable Clock During Tl (set Tl 
Interrupt Latch) 
Enable Clock During Tl 
Test Tl Status (Q response for Tl 
in Progress) 
Test Tl Interrupt Latch 
Start RTC 
Stop RTC (at the ned of the cycle) 
Initiates one cycle operation 
Clears T2 overrun 
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Table II 

MS ADC CAMAC Function Codes 

F(16).A(0) - loads MUX (channels 0 thru 7). 

F(16).A(1) '- loads MUX as above and strobes ADC initiating a conversion. 

F(25).A(0) - initiates a conversion of previously selected channel. 

F(0).A(0) - reads out results of ADC conversion. 

F(2).A(0) - reads r>jt results of ADC conversion and clears register. 

F(0).A(1) - reads out channel number selected by MUX. 

F(24).A(1) - inhibits analogue inputs to MUX and front panel strobe of ADC. 

F(26)A(1) - enable analogue inputs to MUX and front panel strobe of ADC. 

F(25)A(0) - disable LAM Latch (no interrupts produced). 

F(26)A(0) - enable LAM Latch (interrupts produced). 

F(8)A(0) - test LAM A = 1 if LAM set 

F(1C)A(0) - reset LAM. 

F(9)A(0) - reset. 
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the form of two 16 bit blocks via CAMAC commands. The upper block 
represents (in binary form) the most significant 5 BCD digits and the 
lower block contains (in binary form) the 4 least significant digits. 
In the case of the most significant 5 digits, the largest number to 
be converted is 49999 1 0 and hence can be contained in 16 bits (unsigned). 
For the least significant digits, the largest value is 9999. 

In the computer, the actual frequency needed is divided by the 
software into two blocks of the form: 

499990000 (max) floating point 
9999 (max) 

and the appropriate bits are masked and sent to the module. The software 
also handles overflow and underflow between the two blocks. 

Software 
The main programming including the initialization routine is written 

in BASIC. Subroutines, which control individual functions are written in 
machine language. To begin operation, the initialization routine (Fig. 7) 
is executed. It requests parameters for the run including: 

initial frequency 
number of steps (channels) 
step size 
number of sweeps 
step delay time Tl 
ADC delay time T2 
step direction 

Then the routine initializes the channel counter, sweep counter and clears 
the data buffers. Through the operator's console, the run begins by 
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starting the clock module (RTC). 
Once the RTC is started, the- operation of the spectrometer is 

controlled by means of two computer interrupt routines which are initiated 
by the CAMAC modules. The main program, which in Fig. 7 is simplified 
to include only a loop testing for completion of the frequency sweep, 
executes independently of these routines. 

Interrupt Routines 
The two interrupt routines are shown in Fig. 8. They provide 

for the acquisition of data at a predetermined rate. The RTCISR (RTC 
interrupt service routine) is called once every cycle when the RTC sets 
its LAM signal. An interrupt coming from the ADC module (at the end of 
each conversion) causes the routine ADCISR (ADC interrupt service routine) 
to be executed. Figure 9 shows, as an example, the frequency changes 
that occur during a sweep cycle. 

The RTCISR first checks the channel counter and upon finding it 
positive, it determines the step direction end calculates the new frequency. 
The new frequency is then sent to the synthesizer control unit (SCU) where 
it gets converted in two steps into decimal numbers. Next the routine adds 
the sum of ADC conversion values to the data buffer. 

The alternate branch in this routine is taken upon finding the channel 
counter to be zero (completion of one up or down sweep). Then the sweep 
counter is decremented, the channel counter reinitialized and the sum of 
ADC values added to the buffer. Finally, the step direction is comple­
mented and the sweep counter tested. If found equal to zero, the clock 
is turned off, the ADC triggering is disabled, and the finish flag is set 
enabling the main program to proceed to the next task. 
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The ADCISR is very simple and short in order to minimize computer 
overhead. It first reads the value presented by the ADC module, and 
then adds it to the sum of values collected within theisame step. Just 
before returning from this routine, the interrupt is cleared and the 
handshake for the RTC module provided. 
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