Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

Short-interval estimation of proliferation rate using serial diffusion MRI predicts progression-free survival in newly diagnosed glioblastoma treated with radiochemotherapy


Cell invasion, motility, and proliferation level estimate (CIMPLE) mapping is a new imaging technique that provides parametric maps of microscopic invasion and proliferation rate estimates using serial diffusion MRI data. However, a few practical constraints have limited the use of CIMPLE maps as a tool for estimating these dynamic parameters, particularly during short-interval follow-up times. The purpose of the current study was to develop an approximation for the CIMPLE map solution for short-interval scanning involving the assumption that net intervoxel tumor invasion does not occur within sufficiently short time frames. Proliferation rate maps created using the "no invasion" approximation were found to be increasingly similar to maps created from full solution during increasingly longer follow-up intervals (3D cross correlation, R (2) = 0.5298, P = 0.0001). Results also indicate proliferation rate maps from the "no invasion" approximation had significantly higher sensitivity (82 vs. 64%) and specificity (90 vs. 80%) for predicting 6 month progression free survival and was a better predictor of time to progression during standard radiochemotherapy compared to the full CIMPLE solution (log-rank; no invasion estimation, P = 0.0134; full solution, P = 0.0555). Together, results suggest the "no invasion" approximation allows for quick estimation of proliferation rate using diffusion MRI data obtained from multiple scans obtained daily or biweekly for use in quantifying early treatment response.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View