Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Multifunctional self-priming hairpin probe-based isothermal nucleic acid amplification and its applications for COVID-19 diagnosis

Abstract

We herein present a multifunctional self-priming hairpin probe-based isothermal amplification, termed MSH, enabling one-pot detection of target nucleic acids. The sophisticatedly designed multifunctional self-priming hairpin (MSH) probe recognizes the target and rearranges to prime itself, triggering the amplification reaction powered by the continuously repeated extension, nicking, and target recycling. As a consequence, a large number of double-stranded DNA (dsDNA) amplicons are produced that could be monitored in real-time using a dsDNA-intercalating dye. Based on this unique design approach, the nucleocapsid (N) and the open reading frame 1 ab (ORF1ab) genes of SARS-CoV-2 were successfully detected down to 1.664 fM and 0.770 fM, respectively. The practical applicability of our method was validated by accurately diagnosing 60 clinical samples with 93.33% sensitivity and 96.67% specificity. This isothermal one-pot MSH technique holds great promise as a point-of-care testing protocol for the reliable detection of a wide spectrum of pathogens, particularly in resource-limited settings.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View