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Abstract of the Dissertation

Modeling and Simulations of Electrical Energy

Storage in Electrochemical Capacitors

by

Hainan Wang

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2013

Professor Laurent G. Pilon, Chair

The present study investigates transport and electrochemical phenomena in elec-

trochemical capacitors (ECs) for electrical energy storage applications. Modeling

of such systems is made difficult by the complex multidimensional and multiscale

porous electrode structures along with the coupled physical phenomena and redox

reactions. This study is unique in that it presents rigorous development of phys-

ical models for electric double layers and redox reactions in ECs. These models

were used to gain insights into the coupled transport and electrochemical phe-

nomena involved. Finally, the results were used to identify the dominant design

parameters.

First, this study identified the important physical phenomena that must be

accounted for when simulating electric double layer capacitors (EDLCs). It estab-

lished that the Stern and diffuse layers, the finite ion sizes, and the field-dependent

electrolyte permittivity must all be accounted for. To account for the Stern layer

for 3D electrode structures along with all the other phenomena, a new set of

boundary conditions was derived. In fact, this study presents the first simulations

of EDLCs with 3D electrode structures including (i) ordered mesoporous carbon

sphere arrays and (ii) ordered bimodal mesoporous carbons, respectively. The

model and numerical tools were validated successfully against experimental data.
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Second, this study derives a scaling law for the integral areal capacitance of

carbon-based EDLCs supported by rigorous analysis and experimental data for

various mesoporous carbon electrodes with different electrolytes. It establishes

that the integral areal capacitance of porous electrodes can be expressed as the

product of the capacitance of planar electrodes and a semi-empirical function to

correct for the porous electrode morphology. To maximize the integral areal capac-

itance, the electrolyte should have small ion effective diameter and large dielectric

constant. The electrode pore diameter should be tailored as monodispersed as

possible to match the ion diameter.

Third, this study presents dynamic modeling of EDLCs accounting for charge

transport in both the electrode and electrolyte. It provides rigorous physical in-

terpretations of experimental observations from electrochemical impedance spec-

troscopy and cyclic voltammetry (CV) experiments based on physics-based nu-

merical simulations. Moreover, a generalized modified Poisson-Nernst-Planck

(GMPNP) model was derived from first principles to simulate electric double layer

dynamics valid for asymmetric electrolytes and/or in the presence of multiple ion

species. For the first time, a self-similar behavior was identified for the electric

double layer integral capacitance estimated from CV measurement simulations.

Finally, this study presents dynamic modeling of asymmetric supercapacitors

in CV measurements by rigorously and simultaneously accounting for electric

double layers and redox reactions as well as ion insertion in the electrode. It

establishes that in CV measurements of pseudocapacitive materials: (i) the ca-

pacitive current varies linearly with scan rate v and (ii) the Faradaic current is

proportional to v1/2.

The models and results could help develop the optimum electrode architecture

to achieve maximum energy and power densities. Moreover, these models will also

be useful for simulating and designing various practical electrochemical, colloidal,

and biological systems for a wide range of applications.
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CHAPTER 1

Introduction

This chapter presents the motivations and objectives of the present study and

the scope of this Ph.D. thesis. First, an overview of electrochemical capacitors is

provided. Then, the physical phenomena and materials in electrochemical capac-

itors are introduced. Finally, this chapter describes the objectives of the present

research and concludes with the organization of the document.

1.1 Motivations of The Present Study

Electrical energy storage systems (EES) have been the subject of intense study

as they constitute an essential element in the development of sustainable energy

technologies. Electrical energy generated from renewable resources such as solar

radiation or wind provides great potential to meet our energy needs in a sustain-

able manner. It would reduce not only our dependence on fossil fuel but also

pollutant emission responsible for global warming [1, 17–20]. However, these re-

newable energy technologies generate electricity intermittently and thus require

efficient and reliable electrical energy storage (EES) methods [1,21]. For commer-

cial and residential grid applications, electricity must be reliably available at any

time of the day. In fact, second-to-second fluctuations can cause major disruptions

with costs estimated to be in the tens of billions of dollars annually [1]. Thus, the

development of new EES systems will be critical in the use of large-scale solar-

or wind-based electricity generation [1,22]. Moreover, greatly improved EES sys-

tems are required to enable the widespread use of hybrid electrical vehicles (HEV),
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plug-in hybrids, and all-electric vehicles [1, 23, 24]. Figures 1.1a and 1.1b show a

gasoline/electric hybrid bus and a diesel/electric hybrid gantry crane equipped

with an electrochemical capacitor energy storage system to harvest and store ki-

netic energy of the bus or potential energy of the crane during load lowering [1,2].

Furthermore, improvements in ESS performance, reliability, and efficiency are

needed in the development of modern portable electronic devices such as laptops

and smart phones [1].

(a) (b)

Figure 1.1: (a) A gasoline/electric hybrid bus (taken from Ref. [1]) and (b) hy-

brid diesel/electric rubber-tired gantry crane (taken from Ref. [2]) equipped with

electrochemical capacitor energy storage systems.

The performances of electrical energy storage devices can be assessed by com-

paring their energy density (in Wh/kg) and power density (in W/kg). Figure 1.2

shows the so-called Ragone chart plotting the energy density versus the power

density of different electrical energy storage devices. Batteries and fuel cells have

relatively high energy density but low power density due to the slow kinetics of

the chemical reactions taking place. In comparison, capacitors have high power

density but low energy density because they store or deliver electric charges very

rapidly but in limited amount.

Alternatively, electrochemical capacitors (ECs) can operate in a wide range of

energy and power densities. This versatility is a key feature for energy storage,
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Figure 1.2: Energy density and power density of different electrical energy storage

systems (taken from Ref. [1]).

energy harvesting, and energy regeneration applications [1]. For example, ECs are

suitable in various applications where high charging/discharging rates are needed

such as (i) instant restart of electronic equipments, (ii) powering up a computer

CPU from energy-saving sleep mode to full operation, and (iii) powering hybrid

electronic vehicles (HEVs) or electronic vehicles (EVs) [1, 2, 25].

1.2 Electrochemical Capacitors

Electrochemical capacitors (ECs), also known as supercapacitors or ultracapac-

itors, are typically classified into two categories based on their different energy

storage mechanisms as shown in Figure 1.3. First, electric double layer capaci-

tors (EDLCs) store charges physically (i.e., without chemical reactions) in electric

double layers forming near the electrode/electrolyte interfaces. Thus, the process
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is highly reversible and the cycle life is essentially infinite [1, 26]. On the other

hand, pseudocapacitors store energy via not only electric double layer such as that

in EDLCs but also fast surface oxidation-reduction (redox) reactions as well as

possible ion intercalation in the electrode [1, 25, 27–30].

Figure 1.3: Schematics for electrical double layer capacitors and pseudocapacitors.

1.2.1 Electric Double Layer Capacitors

Electric double layer capacitors (EDLCs) have attracted significant attention in

recent years due to their promises as electrical energy storage devices for high

power applications such as hybrid electric vehicles [27, 31–34]. EDLCs store elec-

tric charges physically in the electric double layer forming at electrode/electrolyte

interfaces accessible to ions present in the electrolyte [27,31–34]. Figure 1.4 shows

a schematic of the electric double layer structure forming near a positively charged

electrode. Solvated anions of diameter a migrate and adsorb to the electrode sur-

face due to electrostatic forces while the cations are repelled [8, 9, 35, 36]. The
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Stern layer is defined as the compact layer or inner layer near the electrode sur-

face [8,9,35,36]. Note that there are no free charges within the Stern layer [8,9,35].

Beyond the Stern layer is the so-called diffuse layer where anions and cations are

mobile under the coupled influence of electrostatic forces and diffusion [8,9,35,36].

cation

+

Stern layer

a

Diffuse layer

H

anion

solvent molecule

+
+

+

+

+

+

+

ψψψψs

0 H
x

DIFFUSION

ELECTROSTATIC FORCE

Figure 1.4: A schematic of the electric double layer structure showing solvated

anions and cations arrangement near the electrode/electrolyte interface in the

Stern and diffuse layers.

In practice, EDLCs’ electrodes are made of nanoporous or mesoporous carbons

featuring large surface area to enhance the capacitance and stored energy. More-

over, the pore size distribution also significantly affects the performance of EDLCs.

It has been established that micropores with size less than 2 nm contribute greatly

to the formation of electrical double layer [37–39]. The pores smaller than the ions

usually do not contribute to the double layer capacitance [27, 40]. On the other

hand, porous electrodes must also be electrochemically accessible for ions. There-

fore, the mesopores with diameter ranging from 2 to 50 nm are necessary for fast

dynamic charge thanks to the easier accessibility to ions [33,40–43].
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1.2.2 Pseudocapacitors and Asymmetric Supercapacitors

Pseudocapacitors differ from EDLCs in that their electrodes are made of pseudo-

capacitive materials such as transition metal oxides (MpOq). Their capacitance

and energy density are greatly enhanced thanks to the Faradaic redox reactions

between the redox active ion species (e.g., Li+) and pseudocapacitive materials

MpOq according to [1, 44–47],

MpOq + nLi+ + ne− −−⇀↽−− LinMpOq (1.1)

Moreover, another type of supercapacitors, named asymmetric supercapacitors

or hybrid supercapacitors, has emerged in recent years by combining pseudoca-

pacitors and EDLCs [27, 48–59]. In asymmetric (hybrid) supercapacitors, one

carbon-based electrode stores charges physically in electric double layers while

the other electrode is redox-active and store charges via reversible chemical reac-

tions [27,48–59]. Here, the pseudocapacitive electrode serves as the energy source

and the carbon-based electrode serves as the power source [27,48–59].

Understanding the electrochemical behaviors of pseudocapacitive materials are

essential for designing these electrochemical capacitors and improving their per-

formances. Modeling of such systems is made difficult by the complex multidi-

mensional and multiscale porous electrode structures along with the different and

coupled physical phenomena and redox reactions.

1.3 Materials of Electrochemical Capacitors

The performance of electrochemical capacitors is determined by the combination

of the electrode material and electrolyte used. There are three main categories of

electrode materials used for ECs [25, 28, 47], namely (1) carbon-based materials,

(2) transition metal oxides, and (3) conductive polymers. Similarly, three types of

electrolyte materials are used for ECs including [27,28,47] (1) aqueous electrolytes,
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(2) organic electrolytes, and (3) ionic liquids. The following subsections discuss

the different electrode materials and electrolytes in details.

1.3.1 Electrode Materials

Various carbon-based materials have been considered for electrodes of ECs in-

cluding activated carbon, carbon nanotubes, templated carbons, and carbon aero-

gels [32–34,40]. Carbon materials are attractive for electrodes due to their versa-

tility, easy processability, non-toxicity, high chemical stability, low density, good

electrical conductivity, high surface area, and relatively low cost [28, 33, 40]. The

design of electrodes using carbon materials requires [18,28,33,40] (i) high specific

surface area to ensure high capacitance, (ii) optimum pore size and pore distribu-

tion in order to permit easy access of ions to the electrode surface, and (iii) small

electrical resistance.

Transition metal oxides, composed of transition metal elements (e.g. Ru,

Mn, Ti, Ni, Nb, Mo, V, W, Ce, Co) and oxygen, have been used extensively

as electrodes for pseudocapacitors [1, 25, 28, 60]. Among various transition metal

oxides, ruthenium oxide (RuO2) has been the most widely investigated and com-

mercially used materials for ECs, especially for aerospace and military applica-

tions [1, 27, 61, 62]. RuO2 has a number of attractive features including (i) high

specific capacitance, (ii) long cycle life, (iii) high electrical conductivity, and (iv)

good electrochemical reversibility [1, 25, 28]. However, the scarcity and high cost

of the precious metal Ru greatly impede the wide use of RuO2 for commercial

applications [26,28,60].

Moreover, the conductive polymers, such as polypyrrole, have also been inves-

tigated as ECs’ electrodes [28,63–66]. They have been used as modified membrane

coated on the electrically-conductive materials such as activated carbon to reduce

resistance [28, 66]. Conductive polymers are usually inexpensive and have fast
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doping-undoping process. These materials can also be easily manufactured into

ECs but they showed poor long-term stability during cycling [28].

Finally, nanostructured porous materials feature large surface area and pro-

vide great potential as electrode materials for improving energy density of EES.

Moreover, advances in nanotechnologies have made the assembly of nanoporous

or mesoporous materials possible with controlled morphology using repeatable

and inexpensive synthesis routes [67–71]. However, current understanding of the

mechanisms determining the performances of supercapacitors is still limited due to

(i) the complex geometry of the porous structures and (ii) the complex transport

and electrochemical phenomena occurring at mesoscale and nanoscale [26].

1.3.2 Electrolyte Materials

The performance of electrochemical capacitors also strongly depends on the elec-

trolyte used. The ideal electrolytes for ECs should have the following features

[1,72]: (i) large ionic conductivity and mobility for very fast charge/discharge rates

(< 1 s), (ii) large chemical and electrochemical stability resulting in a large poten-

tial window and long device lifetime, (iii) excellent temperature stability to deliver

high power and energy at both low (−30 ◦C) and high (100 ◦C) temperatures,

and (iv) low volatility, flammability, and toxicity for high safety. The operating

voltage of ECs is determined by the electrochemical stability window (voltage) of

the electrolytes [1, 10]. Above that voltage, electrolysis of the electrolyte occurs

resulting in potential system failure and destruction. Both the energy and power

densities of ECs increase quadratically with the maximum operating potential

window. Thus, electrolytes with a large electrochemical operational window are

desirable [1, 10].

Two frequently used aqueous electrolytes are KOH and H2SO4 [28, 47]. Both

of them have high electrical conductivity resulting in lower device impedance and
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faster response time [1]. However, the maximum operating voltage of aqueous

electrolyte solutions is typically limited to 1 V due to the electrochemical stability

window of water (1.23 V) [1, 25,34].

In comparison, organic electrolytes can reach a potential window larger than

2 V [25, 34]. Organic electrolytes used in commercial ECs generally consist of

1 mol/L acetonitrile or propylene carbonate solutions with tetraethylammonium

tetrafluoroborate Et4NBF4 or Et3MeNBF4 [1]. However, major issues associated

with organic electrolytes include their (i) high cost, (ii) low electrical conductivity

compared with aqueous electrolytes, (iii) low dielectric constant leading to smaller

capacitance, (iv) complex purification procedure, as well as (v) safety concerns due

to the flammability and toxicity of organic solvents [34].

Finally, ionic liquids (ILs) are attractive candidates as electrolytes because

of their (i) high thermal stability, (ii) high decomposition voltage (> 3 V), (iii)

low volatility, (iv) non-flammability, and (v) variety of combination choices of

cations and anions [1, 33, 34]. However, due to their relatively low conductivity,

the power density of ECs using ILs is lower than that achieved using organic

electrolytes [1, 33,34].

1.4 Objectives of The Present Study

The present study focuses on modeling transport and electrochemical phenomena

in electrochemical capacitors (ECs). It aims not only to develop the rigorous

physical modeling approach for electrochemical capacitors but also to identify

the dominant physical phenomena and the design parameters. It is useful in

understanding the coupled transport and electrochemical phenomena involved in

ECs and in providing design rules for ECs.
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1.4.1 Equilibrium Modeling of EDLCs With 3D Electrode Structures

First, the present study aims to develop equilibrium multiscale and multiphysics

simulation tools and use them to identify dominant design parameters of meso-

porous electrodes in order to improve the performances of EDLCs. In this area,

the specific objectives of the study are as follows,

1. To identify the important physical phenomena that must be accounted for

in simulating EDLCs under equilibrium conditions.

2. To develop an equilibrium continuum model of EDLCs validated against

experimental data accounting for three-dimensional ordered electrode struc-

tures.

3. To assess the effects of electrode morphology on the performance of EDLCs

under equilibrium conditions.

4. To formulate design rules for the porous electrode morphology and for the

electrolyte by identifying scaling laws governing the equilibrium capacitance

of carbon-based EDLCs.

1.4.2 Dynamic Modeling of ECs’ Charging/Discharging

Dynamic modeling of electrochemical capacitors is imperative for understanding

and optimizing their performance under charging/discharging conditions. In this

area, the specific objectives of the study are as follows,

1. To develop physical models for simulating ECs valid for practical conditions

with large ion concentrations and large potential and for electrolytes with

asymmetric properties and/or in the presence of multiple ion species.

2. To provide rigorous physical interpretation of experimental observations
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from electrochemical impedance spectroscopy and cyclic voltammetry mea-

surements based on physics-based numerical simulations.

3. To formulate design and operating rules for the electrodes and electrolytes

affecting the charging/discharging dynamics of EDLCs by identifying the

scaling law of cyclic voltammetry for measuring EDLCs.

4. To establish a rigorous approach for analyzing the capacitance of pseudoca-

pacitive materials using cyclic voltammetry measurements based on physics-

based numerical simulations.

1.5 Organization of the Document

Figure 1.5 summarizes the organization of the document including the equilib-

rium and dynamic modeling and simulations of EDLCs and asymmetric super-

capacitors. Specifically, Chapter 2 provides an overview of fundamental concepts

and existing models for electrochemical capacitors. Chapter 3 identifies domi-

nant physical phenomena that must be accounted for in simulating EDLCs based

on equilibrium simulations of a single spherical microelectrode. Chapters 4 and

5 present the equilibrium modeling of EDLCs with three-dimensional electrodes

consisting of (i) ordered mesoporous carbon sphere arrays in periodic packings and

(ii) ordered bimodal mesoporous carbons, respectively. Validations of the models

against experimental data are also provided. Based on the model developed in

Chapters 3 to 5, Chapter 6 presents scaling laws for the integral areal capaci-

tance of carbon-based EDLCs and the resulting design rules. Chapters 7 and 8

present dynamic modeling of EDLCs in electrochemical impedance spectroscopy

(EIS) and cyclic voltammetry (CV) measurements by accounting for the charge

transport in both the electrode and the electrolyte. It also provides physical in-

terpretations of observations from actual EIS and CV measurements. Chapter

9 presents a generalized dynamic model of EDLCs derived from first principles
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valid for practical electrolytes with asymmetric properties and/or in the pres-

ence of multiple ion species. It also identifies the self-similar behavior of integral

areal capacitance of EDLCs in CV measurements. Chapter 10 presents the dy-

namic modeling of asymmetric supercapacitors under CV measurements. It also

rigorously establishes an approach widely used experimentally for discriminating

between electric double layer and redox reaction contributions to the measured

total current and for analyzing the capacitance of pseudocapacitive materials. Fi-

nally, Chapter 11 summarizes the key contributions of the present research and

provides recommendations for future work.

Figure 1.5: Flow chart illustrating the organization of the thesis including the

modeling and simulations of EDLCs and asymmetric supercapacitors.
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CHAPTER 2

Background

2.1 Integral and Differential Capacitances

2.1.1 Definitions

The areal differential capacitance Cdiff and integral capacitance Cint (both in

F/m2) are respectively defined as [16],

Cdiff =
dqs
dψs

and Cint =
qs
ψs

(2.1)

where qs and ψs represent the surface charge density and the surface electric po-

tential, respectively. Note that these definitions are independent of experimental

measurements. Under very low electric potential, the surface charge density varies

linearly with electrical potential and Cdiff = Cint [4].

2.1.2 Capacitances Measured Using Different Techniques

Electrochemical impedance spectroscopy (EIS) measures the differential capaci-

tance through the following formula [9, 73],

Cdiff =
−1

2πfZ ′′ (2.2)

where f and Z ′′ are the frequency of the applied electric potential signal and the

out-of-phase component of the measured impedance, respectively. In addition,

the differential capacitance Cdiff and integral capacitance Cint can be computed
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from CV measurements according to [16],

Cdiff =
js
v

and Cint =
1

ψmax − ψmin

∮
js
2v
dψs (2.3)

where js and ψs represent the measured current density and the imposed surface

electric potential, respectively. The scan rate is denoted by v while ψmax and

ψmin are the maximum and minimum values of the imposed electric potential ψs,

respectively.

Similarly, the galvanostatic charge/discharge method can be used to measure

both differential and integral capacitances through [16],

Cdiff =
js

dψs/dt
and Cint =

js∆t

ψmax − ψmin

(2.4)

where ∆t is the time for varying the electric potential from ψmin to ψmax or vice

versa under imposed current js. Note that in galvanostatic measurements, the

differential and integral capacitances calculated using Equations (2.4) are identical

only when the measured electric potential varies strictly linearly with time. This

condition could be met near zero surface potential [4]. It is also important to note

that the integral capacitance rather than the differential capacitance is typically

reported for supercapacitors when using galvanostatic charge/discharge method

[74–80]. This may be due to two reasons: (i) the integral capacitance directly

represents the total charge storage performance of supercapacitors and (ii) ψs

in Equation (2.4) is the variable directly measured in the galvanostatic method

unlike dψs/dt. Table 2.1 summarizes whether the EIS, CV, and galvanostatic

charge/discharge methods can measure the differential and integral capacitances

and gives the associated expressions.
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Table 2.1: Calculation formula of the differential or integral capacitances using

EIS, CV, and galvanostatic charge/discharge methods [16]. (N/A: not available)

Capacitance EIS CV Galvanostatic

Cdiff
−1

2πfZ”

js
v

js
dψs/dt

Cint N/A

∮
js
2v
dψs

ψmax − ψmin

js∆t

ψmax − ψmin

2.2 Equilibrium Models

2.2.1 Helmholtz Model

Helmholtz [81] was the first to propose the concept of electric double layer. He

realized that charged electrodes immersed in electrolyte solutions will repel the

co-ions while attracting counter-ions to their surfaces. The two compact layers

of charges forming at the electrode/electrolyte interfaces were called the electric

double layer (EDL). Figure 2.1a shows a schematic of the electric double layer

structure formed near the surface of a positively charged electrode as envisioned

by Helmholtz [9, 35, 36,81,82]. In the Helmholtz model, all the counter-ions were

assumed to be adsorbed at the electrode surface [9, 81, 82]. This structure is

analogous to that of conventional dielectric capacitors with two planar electrodes

separated by a distance H [9, 81, 82]. Therefore, the capacitance per unit surface

area (or specific capacitance) of the Helmholtz double layer denoted by CH
s and

expressed in F/m2 is given by [83–87],

CH
s =



ϵ0ϵr
H

for planar electrode (2.5a)

ϵ0ϵr
R0 log(1 +H/R0)

for cylindrical electrode of radius R0 (2.5b)

ϵ0ϵr
H

(
1 +

H

R0

)
for spherical electrode of radius R0 (2.5c)

where ϵ0 and ϵr are the free space permittivity and the relative permittivity of the

electrolyte solutions, respectively. The thickness H of the Helmholtz double layer

can be approximated as the radius of solvated ions [9,35,36]. Note that Equations
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(2.5b) and (2.5c) reduce to the asymptotic expression given by Equation (2.5a)

when the electrode radius is large enough, i.e., R0 ≫ H.

Figure 2.1: Schematics of the electric double layer structure showing the ar-

rangement of solvated anions and cations near the electrode/electrolyte interface.

(a) Helmholtz model, (b) Gouy-Chapman model, and (c) Gouy-Chapman-Stern

model.

2.2.2 Gouy-Chapman Model

Gouy [88] and Chapman [89] developed an electric double layer model accounting

for the fact that the ions are mobile in the electrolyte solutions and are driven by

the coupled influences of diffusion and electrostatic forces [9, 35, 82]. This results

in the so-called diffuse layer shown in Figure 2.1b. In this model, the ions are

treated as point-charges and the equilibrium concentration ci of ion species “i” is

given by the Boltzmann distribution as [8, 9, 35,36,82,90,91],

ci = ci∞ exp

(
−zieψ
kBT

)
(2.6)

where zi and ci∞ are the valency and bulk molar concentration of ion species

“i”, respectively. The absolute temperature is denoted by T , e is the elementary

charge, while kB is the Boltzmann constant (kB = 1.381× 10−23 m2kgK−1s−2). In
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the Gouy-Chapman model, the local electric potential ψ in the diffuse layer is de-

termined by the Poisson-Boltzmann (PB) equation assuming constant electrolyte

permittivity [8,9,35,36,82,90,91]. For binary symmetric electrolytes, z1 = −z2 = z

and c1∞ = c2∞ = c∞. Then, the PB equation is expressed as [8,9,35,36,82,90,91],

∇ · (ϵ0ϵr∇ψ) = 2zeNAc∞ sinh

(
zeψ

kBT

)
(2.7)

where NA is the Avogadro’s number (NA = 6.022× 1023 mol−1).

For planar electrodes and constant electrolyte properties, the exact solution of

Equation (2.7) exists subject to the following boundary conditions (i) ψ(0) = ψD,

and (ii) ψ(∞) = 0. Then, the specific capacitance corresponding to the diffuse

layer CD
s is given by [8, 9, 35, 36,82,90,91],

CD
s =

qs
ψD

=
4zeNAc∞λD

ψD

sinh

(
zeψD

2kBT

)
(2.8)

where qs is the surface charge density and λD is the Debye length for symmetric

electrolytes defined as λD = (ϵ0ϵrkBT/2e
2z2NAc∞)1/2 [8, 9, 35, 36,82,90,91].

For spherical electrodes, the exact solution of Equation (2.7) exists provided

that the Debye-Hückel approximation requiring zieψ/kBT ≪ 1 is satisfied [8, 35,

90,91]. Then, the diffuse layer specific capacitance is given by [8, 35,90,91],

CD
s =

ϵ0ϵr
λD

(
1 +

λD
R0

)
(2.9)

Equations (2.8) and (2.9) reduce to the same asymptotic expression of CD
s =

ϵ0ϵr/λD when the Debye-Hückel approximation and the thin double layer approx-

imation assuming λD/R0 ≪ 1 are satisfied [8, 35,90,91].

2.2.3 Gouy-Chapman-Stern Model

Stern [92] combined the Helmholtz model and the Gouy-Chapman model and

described the electric double layer as two layers (Figure 2.1c), namely: (i) the

Stern layer (or Helmholtz layer), referring to the compact layer of immobile ions
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strongly adsorbed to the electrode surface, and (ii) the diffuse layer where the ions

are mobile and the Gouy-Chapman model [Equation (2.7)] applies [8,9,35,36,82,

90, 91]. Note that there are no free charges within the Stern layer [8, 9, 35, 82].

The total electric double layer capacitance consists of the Stern layer and diffuse

layer capacitances in series [8,9,82,90]. Mathematically, the Gouy-Chapman-Stern

(GCS) model for symmetric electrolytes is expressed as [8, 93,94],

∇ · (ϵ0ϵr∇ψ) =


0 in the Stern layer (2.10a)

2zeNAc∞ sinh

(
zeψ

kBT

)
in the diffuse layer (2.10b)

2.2.4 Modified Poisson-Boltzmann Models

The point-charge assumption associated with the Poisson-Boltzmann equation

[Equations (2.7) and (2.10b)] is only valid for very low ion concentration c∞ and

low electric potential [9, 82, 90]. In reality, the ions have finite size and thus a

maximum ion concentration cmax exists corresponding to the closed packing of

ions. It is given by cmax = 1/(NAa
3) corresponding to simple cubic packing of

ions with effective diameter a [4,95]. Therefore, the ion concentration given by the

Boltzmann distribution [Equation (2.6)] should not exceed cmax. This corresponds

to a maximum surface potential ψmax given by [4,95],

ψmax = −kBT
ze

log(NAa
3c∞) (2.11)

The magnitude of the local electric potential |ψ| in the diffuse layer should not

exceed ψmax for the Gouy-Chapman and Gouy-Chapman-Stern models [Equations

(2.7) and (2.10b)] to be valid. For example, ψmax = 0.04 V for the typical values

of T = 298 K, z = 1, c∞ = 1 mol/L, and a = 0.66 nm [85–87,94].

Numerous studies have been reported in the literature to account for the effect

of finite ion size in the electrolyte solution [4, 95–102]. Among them, the mod-

ified Poisson-Boltzmann (MPB) models based on the local-density and mean-

field approximations are relatively convenient both mathematically and numer-

18



ically [4, 95–102]. For example, Bikerman [96] developed the first equilibrium

modified Poisson-Boltzmann (MPB) model accounting for finite ion size. This

model applies to electrolytes with anions and cations having different volumes

but symmetric valency. Borukhov et al. [97,98] and Silalahi et al. [103] developed

MPB models valid for binary electrolytes with asymmetric valency but identical

ion diameters. Their model was later extended to binary asymmetric electrolytes

with unequal ion diameters [104, 105]. Biesheuvel and co-workers [99, 106, 107]

and Alijó et al. [108] developed more general MPB models valid for asymmetric

electrolytes and/or multiple ion species with different ion sizes and valencies. This

was accomplished by incorporating an excess chemical potential term based on the

Boublik-Mansoori-Carnahan-Starling-Leland equation-of-state. It directly relates

the excess chemical potential to the local ion concentrations, ions’ effective diame-

ters, and their exclusion volumes [99,106–108]. Moreover, Tresset [109] developed

a generalized Poisson-Fermi model for asymmetric electrolytes and multiple ion

species based on the lattice gas approach by considering ions in discrete cells of

different volumes. In addition, Li and co-workers [110–112] developed a model for

asymmetric electrolytes based on the variational principle while accounting for

the finite sizes of both ions and solvent molecules. Alternatively, Horno and co-

workers [113–119] developed a MPB model for asymmetric electrolytes by directly

applying a “Langmuir-type” correction to the equilibrium ion concentration given

by the Boltzmann distribution.

For binary and symmetric electrolytes, the MPB models reduce to [4,95–97,99],

∇ · (ϵ0ϵr∇ψ) =
2zeNAc∞ sinh

(
zeψ

kBT

)
1 + 2νp sinh

2

(
zeψ

2kBT

) (2.12)

where the packing parameter is defined as νp = 2a3NAc∞ = 2c∞/cmax [4,95–97,99].

From here on, the term “MPB model” will be used to refer to Equation (4.1). For

vanishing ion diameter such that a = 0 nm and νp = 0, the MPB model reduces
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to the Gouy-Chapman model given by Equation (2.7). For planar electrodes and

constant electrolyte properties, the surface charge density and diffuse layer specific

capacitance are given by [4, 95,102],

CD
s =

qs
ψD

=
2zeNAc∞λD

ψD

√
2

νp
log

[
1 + 2νp sinh

2

(
zeψD

2kBT

)]
(2.13)

Note that when ψD = 0, Equation (2.13) predicts an extremum for the diffuse layer

capacitance, i.e., CD
s = ϵ0ϵr/λD. This capacitance could be either a maximum or

a minimum value depending on the packing parameter νp as discussed in Refs.

[4, 95,99,102].

2.3 Dynamic Models

2.3.1 Equivalent RC Rircuit and Transmission Line Models

The equivalent RC circuit models and more complex transmission line mod-

els [120–127] have been used to investigate the performance of supercapacitors.

However, the equivalent RC circuit models require prior knowledge of macro-

scopic parameters such as the resistance and capacitance of the device which are

typically determined experimentally or by other methods. In fact, these mod-

els are typically used to fit the experimental data [120–127] rather than predict

the performances of supercapacitors. Moreover, the classical RC circuit models

inherently neglects ion diffusion and non-uniform ion concentration in the elec-

trolyte [128–130]. Thus, Thus, these models may not be valid for supercapacitors

under large electric potential and electrolyte concentration [128–131].

2.3.2 Homogeneous Models

Homogeneous models were also developed to investigate the charging/discharging

dynamics of supercapacitors [132–145]. These models treat the heterogeneous mi-

crostructure of the electrodes as homogeneous with some effective macroscopic
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properties determined from effective medium approximations and depending on

porosity and specific area [132–145]. Therefore, they cannot account for the de-

tailed three-dimensional electrode morphology. Moreover, homogeneous models

typically impose specific area capacitance or volumetric capacitance rather than

predict them [132–145].

2.3.3 Poisson-Nernst-Planck Model

The classical Poisson-Nernst-Planck (PNP) model governs the transient electric

potential and ion concentration profiles in the diffuse layer [8, 9, 35, 90, 132, 146].

It is expressed as [8, 9, 35,90,132,146],

∇ · (ϵ0ϵr∇ψ) = −
N∑
i=1

zieNAci (2.14a)

∂ci
∂t

= ∇ ·
(
Di∇ci︸ ︷︷ ︸
Diffusion

+
ziDi

RuT
Fci∇ψ︸ ︷︷ ︸

Migration

− ciu︸︷︷︸
Advection

)
(2.14b)

where t is time and ci is the molar concentration for ion species i, respectively.

Here, Di is the mass diffusion coefficient of ion species i (m2/s), F = eNA =

9.65 × 104 C/mol is the Faraday constant, Ru = kBNA = 8.314 J/(K·mol) is the

universal gas constant and u is the velocity vector of ions’ bulk motion. The three

terms in the mass conservation equation given by Equation (2.14b) correspond

to [9,82,132]: (1) ions’ diffusion to their concentration gradient, (2) ions’ migration

due to electrostatic force, and (3) advection in the electrolyte due to the bulk

motion of ion species, respectively. Note that the Poisson-Nernst-Planck model

[Equation 2.14] reduces to the Gouy-Chapman model in steady state and when

advection is negligible [35, 147].

The PNP model neglects the finite size of ions and treat ions as point-charges

[95, 130, 146, 148, 149]. This assumption breaks down when either the electrolyte

concentration c∞ or the electric potential is large [95, 146, 149]. Therefore, the

PNP model is invalid for practical EDLCs with typical electrolyte concentration
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larger than 1 mol/L and potential window larger than 1 V.

2.3.4 Modified Poisson-Planck Models

Recent efforts have been made to account for the effect of finite ion size in modeling

ion transport in concentrated electrolyte solutions and/or under large electric

potential [95,130,146,150–162]. For example, Kilic et al. [146] derived a modified

Poisson-Nernst-Planck (MPNP) model valid for binary and symmetric electrolytes

under large electrolyte concentration and electric potential. The authors added

an excess term accounting for the entropic contribution due to finite-size ions in

the expression of the Helmholtz free energy. This resulted in an excess term in the

expressions of the chemical potentials and mass fluxes [95,130,146,151]. Assuming

identical diffusion coefficient D1 = D2 = D and negligible advection effect, the

MPNP model is expressed as [95,130,146,151],

∇ · (ϵ0ϵr∇ψ) = eNAz(c1 − c2) (2.15a)

∂ci
∂t

= ∇ ·
(
D∇ci︸ ︷︷ ︸
Diffusion

+
ziD

RuT
Fci∇ψ︸ ︷︷ ︸

Migration

+
DNAa

3ci∇(c1 + c2)

1−NAa3(c1 + c2)︸ ︷︷ ︸
Correction due to finite ion size

)
(2.15b)

This MPNP model reduces to the PNP model [Equation (2.14)] for vanishing ion

diameter, i.e., for a = 0. Moreover, the MPNP model reduces to the MPB model

[Equation (2.12)] in steady state [4]. Note that this MPNP model does not apply

to asymmetric electrolytes or to multiple ion species [95,130,146,148–152].

Alternatively, several authors [153–155] incorporated the finite ion size in ion

mass fluxes using the activity coefficient to account for the deviation from ideal

electrolyte solutions. However, these studies [153–155] were limited to binary and

symmetric electrolytes. Note that the MPNP model developed by Kilic et al. [146]

[Equation (2.15)] can be also formulated in a form equivalent to that based on the

activity coefficient [95,119,130].

Davidson and Goulbourne [156] extended the MPNP model to multiple ion
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species but with symmetric ion diameter and valency. Eisenberg and co-workers

[157–159] developed a MPNP model for binary asymmetric electrolytes based on

the variation principle. Horng et al. [160] later extended this model [157–159]

for asymmetric electrolytes with multiple ion species. However, these MPNP

models [157–160] were expressed as integral-differential equations, thus making the

numerical solution procedure highly involved particularly for three-dimensional

geometries.

Lu and Zhou [161,162] extended the expression of chemical potential developed

in Refs. [97,98] and proposed a “size-modified” Poisson-Nernst-Planck (SMPNP)

model for asymmetric electrolytes and multiple ion species. In their model [161,

162], they introduced a parameter “ki = ai/a0” representing the ratio of ion

diameter ai and the diameter of solvent molecules a0. The authors considered

different cases for ki > 1 and justified that the model successfully constrained the

ion concentrations below their maximum values. However, this SMPNP model

breaks down when neglecting the size of solvent molecules and as ki → ∞ since

the excess term accounting for finite ion sizes approaches infinity.

2.4 Conclusions

The present chapter first summarized the definitions of integral and differential

capacitances as well as their calculation formula in different experimental tech-

niques. Then, it presented an overview of the existing models in the literature for

equilibrium and transient simulations of supercapacitors. Limitations associated

with these models were also discussed. Simulations of supercapacitors will be per-

formed based on new numerical tools capable of capturing important electrochem-

ical and transport phenomena in supercapacitors and will also be validated with

experimental data. Scaling laws governing the performances of EDLCs will also

be presented by performing dimensional analysis of the physics-based continuum

modeling. Note that more detailed background and current state of knowledge on
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specific topics will be introduced in the subsequent chapters.
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CHAPTER 3

Accurate Simulations of EDLCs of Microspheres

This chapter presents the modeling and simulations of electric double layer capac-

itance of spherical microelectrodes. It aims to clarify the drawbacks of existing

models and to identify the dominant physical phenomena that must be accounted

for in predicting the electric double layer capacitance.

3.1 Introduction

Microelectrodes and ultramicroelectrodes (UMEs) have been the subjects of in-

tense studies in electrochemical sensing [163–171] and in electrical energy storage

and conversion [18, 27, 70, 72, 172–179]. Microelectrodes and ultramicroelectrodes

refer to electrodes with characteristic size less than 25 µm [165–168]. These elec-

trodes have been used extensively in different scanning probe microscopy tech-

niques [180–186]. For example, scanning electrochemical potential microscopy

(SECPM) was developed to directly measure the equilibrium electric potential

profile in the electric double layer forming near electrode surfaces [182–186]. It

also provides information on the local charge distribution and electric field in the

electrolyte. The size and geometry of UMEs are critical parameters determining

the spatial and temporal resolutions of the measurements [180–186].

Moreover, electrodes with nanostructures and tailored morphology hold great

promise to enhance the energy and power densities of electrical energy storage de-

vices [18, 27, 70, 72, 172–179]. For example, Pech et al. [31] synthesized onion-like

carbon spheres 6 − 7 nm in diameter and used them to synthesize electrodes for
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electric double layer capacitors (EDLCs) using electrophoretic deposition. The

volumetric power density of their EDLC devices was comparable to that of con-

ventional electrolytic capacitors while the volumetric energy density was one order

of magnitude larger [31]. This was attributed to the electrode’s fully accessible

surface area [31].

In all the above mentioned applications, understanding the electric double

layer structure is of great importance for the rational and optimum design of the

electrode morphology [27, 70, 175, 176,183–186]. For this purpose, numerical sim-

ulations can facilitate the design of electrodes in a more systematic and efficient

way than a trial-and-error approach. They can also account for various and com-

plex phenomena and identify the dominant processes governing the capacitance

behavior of the electrode. This chapter aims to develop rigorous and accurate

numerical tools for simulating electric double layer formed near ultramicroelec-

trodes. It also assesses the validity of analytical expressions for the capacitance

of ultramicroelectrodes.

3.2 Background

The equilibrium models for electric double layers were reviewed in Section 2.2 and

therefore need not be repeated here. This section presents a review of existing

simulations of electric double layer near ultramicroelectrodes.

3.2.1 Simulations of Electric Double Layer Near Ultramicroelectrodes

The models discussed in Section 2.2 have been used extensively to investigate the

electric double layer near ultramicroelectrodes despite their inherent limitations.

Huang et al. [85–87] used the Helmholtz model [Equation (2.5)] to predict the

specific capacitance of EDLCs based on single spherical and cylindrical electrode

carbon particles as well as single cylindrical pore. Their models predicted that the
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total specific capacitance decreases with increasing electrode radius larger than

2 nm. However, the electrolyte permittivity was used as an empirical parameter

to match the specific capacitance predicted by Equation (2.5) with experimental

data [85–87].

Compton and co-workers [187,188] investigated the effect of the electrode cur-

vature on the diffuse layer formed at the surface of single hemispherical and cylin-

drical nanoelectrodes. The authors solved the Gouy-Chapman model [Equation

(2.7)] numerically for electrode radius ranging from 2 nm to 100 µm. The sur-

face electric potential ψs was less than 0.25 V and the electrolyte concentration

c∞ was less than 0.1 mol/L. They observed significantly enhanced surface charge

density for sphere radius less than 50 nm and attributed this phenomenon to the

“nonclassical behavior” caused by the large electrode curvature [187, 188]. How-

ever, it should be noted that this trend could be readily predicted by the exact

solution given by Equation (2.9). Moreover, the Gouy-Chapman model used in

Refs. [187,188] is limited to very low ion concentrations and electric potentials.

Huang et al. [94] used the Gouy-Chapman-Stern model to investigate the ef-

fects of the shape and geometry of a single nanopore on the specific capacitance.

They explored “slit” and cylindrical pores with diameter ranging from 2 to 16 nm.

The dielectric permittivity ϵr = 9.73 was imposed in the Stern layer based on the

values previously fitted in Refs. [85,86] while ϵr = 36 in the diffuse layer [94]. The

electrolyte concentration was c∞ = 1.0 mol/L and the electrode surface potential

was ψs = 1 V. However, the Gouy-Chapman-Stern model breaks down for such

concentration and potential as ions can no longer be treated as point-charges [?,4].

Hamou et al. [185, 186] numerically investigated the electric potential profile

near the probe apex in SECPMs by simulating planar and spherical electrodes.

Their model accounted for both the Stern layer and the finite size of ions and

solved the MPB model given by Equation (4.1). The electrolyte concentration c∞

ranged from 10−5 to 10−2 mol/L while the surface potential ψs varied from 0.2
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to 0.4 V [185, 186]. The authors investigated the effects of the shape and size of

the probe on the electric potential profile in the electrolyte. They found that a

sharper apex resulted in (i) higher electric field and surface charge density at the

probe vertex, as well as (ii) better resolution of the electric potential in the lateral

direction [185,186].

In nearly all the above mentioned references, the electrolyte dielectric per-

mittivity was assumed to be constant and sometimes was treated as a fitting

parameter. However, the relative permittivity ϵr of polar electrolytes is known

to significantly decrease as the electric field increases [3, 189–195]. In fact, the

individual electrolyte molecules become highly oriented under large electric field.

Therefore, further orientation of the molecules can hardly provide more polariza-

tion and the relative permittivity decreases [191–193]. Booth derived the following

model to account for the dependency of electrolyte dielectric permittivity on the

local electric field [189–191],

ϵr(E) = n2 +
(
ϵr(0)− n2

) 3

βE

[
coth(βE)− 1

βE

]
for E ≥ 107 V/m(3.1a)

ϵr = ϵr(0) for E < 107 V/m (3.1b)

where E = |−∇ψ| is the norm of the local electrical field vector, ϵr(0) is the relative

permittivity at zero electric field, and n is the index of refraction of the electrolyte

at zero electric field frequency. Results of molecular dynamics simulations for

different electrolytes [3, 193, 194] have verified that the Booth model accurately

predicts the electrolyte permittivity for high electric fields up to 4 V/nm typically

encountered in EDLCs [3, 10]. Moreover, the Booth model has been combined

with Poisson equation in Refs. [196–198] to investigate the repulsion between two

charged planar surface electrodes due to hydration forces in aqueous electrolyte

solutions. Hamou et al. [186] investigated the effect of field-dependent electrolyte

permittivity using the Booth model in the simulations of SECPM. However, they

did not observe significant changes in the dielectric permittivity and in electric

potential profiles [186].
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More recently, Wang et al. [199] utilized the MPB and Booth models to predict

the specific capacitance of closely packed monodispersed sphere arrays with differ-

ent packing morphologies and sphere diameter. The numerical results established

that the diffuse layer specific capacitance of the sphere arrays significantly de-

creased when the field-dependent electrolyte permittivity was accounted for [199].

However, the Stern layer capacitance was predicted using the Helmholtz model

[Equation (2.5a)], rather than by simulating the complete electric double layer

structure consisting of both the Stern and diffuse layers.

This chapter aims to clarify the dominant physical phenomena that must be

accounted for in simulating electric double layer formed near ultramicroelectrodes.

It also assesses the validity of the Helmholtz model. An equilibrium model based

on continuum theory was developed to predict the specific capacitance of a single

spherical electrode particle with various radius. To the best of our knowledge,

the present study is the first to simulate the electric double layer capacitance of

ultramicroelectrodes by simultaneously accounting for (1) the Stern and diffuse

layers, (2) finite size of ions, and (3) field-dependent dielectric permittivity. Note

that the double layer capacitances also significantly depend on surface electric

potential [4, 95], electrolyte concentration [99, 102] and temperature [Equation

(2.12)]. This has been explored extensively in the literature and need not be

repeated.

3.3 Analysis

3.3.1 Schematics and Assumptions

Figure 3.1 shows the schematic of the computational domain simulated in the

present study. A spherical electrode of radius R0 was immersed in an electrolyte

solution. The region of electrolyte solution consists of two layers corresponding

to (1) a Stern layer of thickness H near the electrode surface and (2) a diffuse
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layer beyond. By virtue of symmetry, the problem was one-dimensional in the

radial direction and was solved in spherical coordinates. The electric potential

was prescribed as positive at the electrode surface and was zero far away from the

electrode surface. The length of the overall computational domain was specified to

be L = 80 nm for all cases simulated. Increasing this length to 160 nm was found

to have no effect on the predicted electric potential profile and on the specific

capacitance.

R0

H

r

L

Electrode

Electrolyte

Stern layer

diffuse layer

Figure 3.1: Schematic and coordinate system of the simulated computational

domain consisting of the Stern layer and the diffuse layer. The problem is one-di-

mensional in spherical coordinates by virtue of symmetry.

To make the problem mathematically tractable, the following assumptions

were made: (1) the electric potential and ion concentration were invariant with

time (steady state) and reached their equilibrium states, (2) anions and cations

had the same and constant effective diameter [4, 95, 200] independent of the elec-

trolyte concentrations, (3) isothermal conditions prevailed throughout the elec-

trode and electrolyte, (4) advection of the electrolyte was assumed to be negli-
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gible, (5) the ions could only accumulate at the electrode surface and could not

diffuse into the electrode particle, i.e., there was no ion insertion.

3.3.2 Governing Equation and Boundary Conditions

The local steady-state and equilibrium electric potential in the electrolyte solu-

tion denoted by ψ(r) was computed by solving (i) Equation (2.10a) in the Stern

layer and (ii) Equation (2.12) in the diffuse layer. In addition, the coordinate

transformation R = r −R0 was used to simplify the governing equation to,

1

(R +R0)2
d

dR

(
ϵ0ϵr(R +R0)

2 dψ

dR

)

=


0 0 ≤ R < H (3.2a)

2zeNAc∞ sinh

(
zeψ

kBT

)
1 + 2νp sinh

2

(
zeψ

2kBT

) R ≥ H (3.2b)

where R represents the distance from the electrode surface.

The associated boundary conditions were given by [8,90],

ψ = ψs, at R = 0 (3.3a)

ψ
∣∣
R=H− = ψ

∣∣
R=H+ and ϵ0ϵr

dψ

dR

∣∣∣∣
R=H−

= ϵ0ϵr
dψ

dR

∣∣∣∣
R=H+

, at R = H (3.3b)

ψ = 0, at R = L (3.3c)

Equation (3.3b) states that the electric potential and displacement were continu-

ous across the Stern/diffuse layers interface located at R = H [8,90]. Cases when

H = 0 in Equations (3.2) and (3.3) correspond to simulations without the Stern

layer as performed in Refs. [4, 95–97,99].

3.3.3 Constitutive Relations

In order to solve Equations (3.2) and (3.3), the electrolyte properties ϵr, z, c∞

and a along with the temperature T are needed. Here, the Booth model [189–191]
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given by Equation (3.1) was used to account for the effects of the electric field

on electrolyte relative permittivity. The present study focuses on aqueous binary

symmetric electrolyte solution at room temperature (T = 298 K) characterized

by the following properties: ϵr(0) = 78.5 [82], n = 1.33, and β = 1.41 × 10−8

V/m [196–198]. The effective ion diameter was taken as a = 0.66 nm and the

valency was z = 1 corresponding to solvated ions such as K+, OH−, and Cl− in

aqueous solutions [200], for example. The electrolyte concentration was chosen as

c∞ = 1.0 mol/L corresponding to the typical values in EDLCs.

Finally, the Stern layer thickness H was approximated as the solvated ion

radius, i.e., H = a/2 = 0.33 nm [9, 35, 36]. In reality, the Stern layer thickness

may be larger than the solvated ion radius due to the specific adsorption of solvent

molecules or anions near the electrode surface [8, 9, 36, 82, 90]. This is typically

caused by non-electrostatic forces [8, 9, 36, 82, 90]. A parametric study was also

carried out for different values of Stern layer thickness H = 0, 0.33 and 1.0 nm.

3.3.4 Method of Solution And Data Processing

Equation (3.2) was solved using the commercial finite element solver COMSOL

3.5a, along with the boundary conditions given by Equation (3.3). The model was

solved for constant permittivity ϵr(0) or field-dependent permittivity ϵr(E) given

by Equation (3.1). The specific capacitances of the Stern and diffuse layers were

computed by dividing the surface charge density [35, 201, 202] qs(R) = ϵ0ϵrE(R)

by their respective potential difference as [9, 82,90],

CSt
s =

qs(0)

ψs − ψD

=
ϵ0ϵrE(0)

ψs − ψD

and CD
s =

qs(H)

ψD

=
ϵ0ϵrE(H)

ψD

(3.4)

where E(R) = |−dψ/dR|(R) is the norm of the local electric field at location R

while ψD = ψ(H) is the electric potential computed at the Stern/diffuse layers

interface. Then, total specific capacitance Cs was calculated using the series
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formula as [9, 82, 90],

1

Cs

=
1

CSt
s

+
1

CD
s

(3.5)

Numerical convergence was assessed based on the surface charge densities qs(R)

at R = 0 and at R = H. The convergence criterion was chosen such that the

maximum relative difference in both qs(0) and qs(H) was less than 1% when

multiplying the total number of finite elements by two. The total number of finite

elements required to obtain a converged solution was less than 400 for all cases

simulated in the present study.

3.3.5 Validation

The numerical tool was validated against (i) the exact solutions of Gouy-Chapman

model for planar electrodes [Equation (2.8)] and spherical electrodes [Equation

(2.9)] for ϵr = 78.5, c∞ = 0.01 mol/L and ψD = 0.01 V, and (ii) the numerical

results of MPB model [Equation (2.12)] for planar electrodes reported in Ref. [4]

for a wide range of packing parameter νp and dimensionless potential (zeψD/kBT ).

Excellent agreement was found in all cases considered.

Figure 3.2 shows the numerically predicted diffuse layer specific capacitance

CD
s as a function of sphere radius R0 ranging from 1 nm to 100 µm. It was obtained

by solving Equation (3.2) with H = 0 assuming constant permittivity ϵr = 78.5,

c∞ = 0.01 mol/L, a = 0.66 nm (i.e., νp = 0.0035) and ψD = 0.01 V. Figure

3.2 also shows the exact solutions for planar and spherical electrodes respectively

given by Equations (2.8) and (2.9). The numerical predictions agreed quite well

with the exact solutions for all values of electrode radius considered. It is evident

that CD
s decreased with increasing sphere radius. It also reached the asymptotic

value of planar electrodes [Equation (2.8)] for sphere radius larger than 100 nm.

This can be attributed to the fact that smaller sphere radius results in larger

surface electric field [202] and thus larger surface charge and specific capacitance.
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These results are similar to the trend predicted numerically in Refs. [187,188] for

spherical and cylindrical nanoelectrodes using ψs = 0.25 V and c∞ = 0.1 mol/L.

However, the observed trend is not due to “nonclassical behavior” but based on

classical continuum theory.
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Figure 3.2: Predicted diffuse layer specific capacitance CD
s obtained by numeri-

cally solving Gouy-Chapman model [Equation (2.7)] assuming constant permittiv-

ity ϵr = 78.5, c∞ = 0.01 mol/L, and ψD = 0.01 V, along with the exact solutions

for planar and spherical electrodes [Equations (2.8) and (2.9)].

3.4 Results and Discussions

3.4.1 Revisiting Gouy-Chapman-Stern Model

Figure 3.3 shows the numerically predicted Stern, diffuse, and total specific capac-

itances as a function of sphere radius R0 ranging from 1 nm to 100 µm as well as

the predictions using Helmholtz model [Equation (2.5c)]. Results were obtained

by solving the Gouy-Chapman-Stern model [Equation (2.10)] assuming constant
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permittivity ϵr = 78.5, c∞ = 1 mol/L, H = 0.33 nm, and ψs = 0.5 V. The

specific capacitances CSt
s , CD

s , and Cs were computed using Equations (3.4) and

(3.5). Figure 3.3 indicates that the predicted CSt
s decreased while CD

s increased

slightly with increasing sphere radius and reached a plateau for R0 larger than 100

nm. In addition, the Stern layer specific capacitance CSt
s was much smaller than

CD
s . Thus, the total specific capacitance Cs was dominated by CSt

s according to

Equation (3.5).

Furthermore, Figure 3.3(a) indicates that the predictions of Helmholtz model

[Equation (2.5c)] were identical to the computed Stern layer specific capacitance

CSt
s . This can be attributed to the fact that in both models, the electric potential

is governed by Poisson’s equation [Equation (2.10a)] assuming constant permit-

tivity [83,84]. Thus, the electric potential profile for planar electrodes is linear in

both the Helmholtz model and the solution of the Gouy-Chapman-Stern model in

the Stern layer [8, 9, 36, 82, 90]. Consequently, both models predict the same spe-

cific capacitance, i.e., CH
s =CSt

s . This also establishes that the Helmholtz model

predicts the Stern layer capacitance rather than the total double layer capacitance

as sometimes assumed in the literature for large electrolyte concentrations [85–87].

Figure 3.3(b) shows the predicted electric potential ψD at the diffuse layer

boundary (R = H = 0.33 nm) as a function of sphere radius R0, as well as

the maximum potential ψmax given by Equation (2.11) for ϵr = 78.5, c∞ = 1

mol/L, H = 0.33 nm, and ψs = 0.5 V. It indicates that the computed diffuse

layer potential ψD was larger than the maximum potential ψmax = 0.04 V for all

values of sphere radius considered. Therefore, the Gouy-Chapman-Stern model

[Equation (2.10)] was not valid for computing the diffuse layer capacitance CD
s for

such high concentration as the results do not satisfy the point-charge assumption.
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Figure 3.3: Predicted (a) Stern layer, diffuse layer, and total specific capacitances,

and (b) electric potential ψD at the diffuse layer boundary (R = H = 0.33 nm)

obtained by numerically solving Gouy-Chapman-Stern model [Equation (2.10)]

assuming constant electrolyte permittivity ϵr = 78.5, c∞ = 1 mol/L, and ψs = 0.5

V.

3.4.2 Effect of Finite Size of Ions

Figure 3.4 shows the numerically predicted specific capacitances CSt
s , CD

s , and Cs

as a function of sphere radius R0 obtained by solving the MPB model with Stern

layer [Equations (3.2) and (3.3)]. The model accounted for both the Stern layer

and the finite ion size in the diffuse layer with effective ion diameter a = 0.66

nm. The other parameters were identical to those used to generate Figure 3.3,

i.e., ϵr = 78.5, c∞ = 1 mol/L, H = a/2 = 0.33 nm, and ψs = 0.5 V. Here

again, the Stern layer specific capacitance CSt
s was identical to the predictions

of (i) the Helmholtz model CH
s [Equation (2.5c)] and (ii) of the Gouy-Chapman-

Stern model (Figure 3.3) for all values of sphere radius. However, the predicted

diffuse layer specific capacitance CD
s decreased with increasing sphere radius by

contrast with predictions from the Gouy-Chapman-Stern model shown in Figure

3.3. Moreover, CD
s was about four times smaller than that plotted in Figure 3.3.
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Then, the total specific capacitance Cs was no longer dominated by the Stern layer

specific capacitance and was about half of that predicted by the Gouy-Chapman-

Stern model (Figure 3.3). These results demonstrate that the finite size of ions

has a significant effect on the specific capacitance and must be accounted for

in simulating electric double layer for large electrolyte concentration and large

electric potential. Here again, the Helmholtz model cannot be used to predict the

total specific capacitance.
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Figure 3.4: Predicted specific capacitances obtained by numerically solving the

MPB model with Stern layer [Equations (3.2) and (3.3)] assuming constant

electrolyte permittivity ϵr = 78.5, c∞ = 1 mol/L, and ψs = 0.5 V, while

H = a/2 = 0.33 nm.

3.4.3 Effect of Field-dependent Dielectric Permittivity

Figure 3.5 shows the numerically predicted specific capacitances CSt
s , CD

s , and

Cs as a function of R0 accounting for field-dependent permittivity. Results were
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obtained by solving the MPB model with Stern layer [Equations (3.2) and (3.3)]

with c∞ = 1 mol/L, H = a/2 = 0.33 nm, ψs = 0.5 V, and ϵr given by Equation

(3.1). It also shows the predictions by the Helmholtz model [Equation (2.5c)]

using ϵr = ϵr(Es) based on the local electric field computed at the electrode

surface Es = E(R = 0).
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Figure 3.5: Predicted specific capacitances obtained by numerically solving the

MPB model with Stern layer [Equations (3.2) and (3.3)] using field-dependent

electrolyte permittivity [Equation (3.1)] with c∞ = 1 mol/L, ψs = 0.5 V and

H = a/2 = 0.66 nm.

Figure 3.5 indicates that the predicted Stern layer specific capacitance CSt
s

using field-dependent permittivity ϵr(Es) differed significantly from that obtained

assuming constant permittivity (Figure 3.4). First, the numerical predictions

assuming constant permittivity overestimated CSt
s by a factor of 4. Second, the

predicted value of CSt
s was now in the range of 40− 45 µF/cm2 and was about 4

to 5 times smaller than CD
s . Third, the predicted Stern layer capacitance CSt

s was

found to be nearly independent of the sphere radius. This can be attributed to
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the facts that a smaller sphere radius resulted in larger surface electric field and

thus smaller electrolyte permittivity. Overall, these competing effects balanced

each other so that the surface charge density, given by qs = ϵ0ϵr(Es)Es, and the

specific capacitance CSt
s given by Equation (3.4) did not change significantly as

sphere radius varied.

By contrast, the Helmholtz model predicted that the specific capacitance de-

creased with decreasing sphere radius less than 40 nm due to the significant de-

crease of electrolyte permittivity. In fact, the Helmholtz model underestimated

the Stern layer capacitance for sphere radius less than 40 nm when accounting

for field-dependent permittivity. Figure 3.5 also demonstrates that the predicted

diffuse layer specific capacitance CD
s using field-dependent permittivity ϵr(E) was

nearly the same as the predictions assuming constant permittivity ϵr(0) shown

in Figure 3.4. Note that the electrolyte relative permittivity and the Stern layer

thickness (or solvated ion radius) could be adjusted arbitrarily in order to achieve

good agreement between Helmholtz model and experimental data as performed

in Refs. [85–87]. However, the effects of electrolyte concentration and electrode

potential cannot be predicted explicitly by this approach. In other words, such

an approach lacks rigor and thus cannot be used for the systematic optimization

of EDLCs.

Overall, the total capacitance Cs = 31 − 37 µF/cm2 was about half of that

predicted assuming constant permittivity (Figure 3.4). It was dominated by the

Stern layer capacitance as shown in Figure 3.5. This is consistent with the hy-

pothesis typically made for concentrated electrolyte solutions [85–87]. Moreover,

the electrode curvature had no effect on the predicted specific capacitance CSt
s ,

CD
s , and Cs for sphere radius larger than 40 nm instead of 100 nm when assuming

constant permittivity (Figure 3.4).

In summary, these results demonstrate that the Stern layer as well as the finite

ion size and field-dependent electrolyte permittivity need to be accounted for in
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simulating EDLCs. This is particularly true when the electrode sphere radius is

small and less than 40 nm for aqueous electrolytes.

Note that Hamou et al. [186] investigated the effect of field-dependent elec-

trolyte permittivity in the simulation of SECPMs using the Booth model. Unfor-

tunately, the parameters used in the Booth model were not reported in Ref. [186].

Unlike the present study, the authors did not observe significant change in the di-

electric permittivity and in electric potential profiles [186]. This may be attributed

to the following two reasons. First, the electrolyte concentration and the surface

potential considered in Ref. [186] were c∞ = 10−5−10−3 mol/L and ψs = 0.2−0.4

V. These values were lower than c∞ = 1 mol/L and ψs = 0.5 V used in the present

study. Second, electric double layers between the working electrode and the probe

overlapped in the simulations of SECPMs [186]. This could significantly reduce

the local electric field making the dependency of the electrolyte permittivity on

the electric field negligible [199].

3.4.4 Effect of Stern Layer Thickness

Figure 3.6 shows the diffuse layer specific capacitance CD
s as a function of R0

obtained by solving Equations (3.2) and (3.3) using field-dependent permittivity

for Stern layer thickness H = 0, 0.33 and 1.0 nm. The case of H = 0 nm

corresponds to the simulation of the diffuse layer without Stern layer. The other

parameters were identical to those used to produce Figure 3.5. Figure 3.6 shows

that CD
s decreased with decreasing Stern layer thickness for all particle radius

R0. The predicted C
D
s significantly decreased with increasing sphere radius R0 for

finite Stern layer thickness H. However, in the limiting case of H = 0 nm (i.e.,

without Stern layer), CD
s remained nearly independent of R0.
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Figure 3.6: Predicted diffuse layer specific capacitance CD
s obtained by numeri-

cally solving Equations (3.2) and (3.3) using field-dependent electrolyte permittiv-

ity [Equation (3.1)] for Stern layer thickness H = 0, 0.33 and 1.0 nm. Electrolyte

concentration was set to be c∞ = 1 mol/L and surface potential was ψs = 0.5 V

while a = 0.66 nm.

3.5 Conclusions

This chapter presented numerical simulations of the electric double layer near the

surface of a spherical ultramicroelectrode particle immersed in aqueous electrolyte

solution. The model accounted for (i) the Stern and diffuse layers, (ii) the finite

size of ions in both layers, as well as (iii) the field-dependent electrolyte permittiv-

ity. The effect of electrode curvature was also investigated by varying the particle

radius from 1 nm to 100 µm. The following conclusions can be drawn:

1. The field-dependent permittivity ϵr(E) significantly affects predictions of the

Stern layer and total specific capacitances for all particle radius considered.

2. The finite size of ions and the Stern layer need to be accounted for in predict-
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ing the electric double layer capacitance for large electric potential (∼ 0.5

V) and electrolyte concentration (∼ 1 mol/L).

3. The electrode curvature has negligible effect on the Stern layer and diffuse

layer specific capacitances for sphere radius larger than 40 nm for both

constant and field-dependent permittivity.

4. The Stern layer capacitance dominates the total capacitance when the elec-

trolyte concentration and surface potential are large (c∞ ≥ 1 mol/L and

ψs ≥ 0.5 V).

5. The Helmholtz model predicts the Stern layer capacitance CSt
s of a sphere if

the electrolyte permittivity is assumed to be constant or if the sphere radius

is larger than 40 nm.

6. The Helmholtz model significantly underestimates CSt
s for sphere radius less

than 40 nm when accounting for field-dependent permittivity.

These conclusions will be useful in accurately simulating ultramicroelectrodes for

electrochemical sensors and EDLCs with more complex geometries.
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CHAPTER 4

Equilibrium Simulations of EDLCs with Carbon

Sphere Arrays

The previous chapter identified the dominant physical phenomena that must be

accounted for in modeling EDLCs based on the simulations of a single spherical

microelectrode. Electrodes of actual EDLCs are made of mesoporous materials

with three-dimensional morphology. This chapter extends the tool developed in

the previous chapter and presents the modeling and simulations of EDLCs with

three-dimensional electrode morphology.

4.1 Introduction

Electrodes in EDLCs are typically made of materials featuring both micropores

and mesopores offering large surface area [1, 27, 28, 32–34, 40]. Research efforts

have focused on increasing the energy density of EDLCs by increasing the surface

area of porous electrodes and tailoring their morphology or pore size distribu-

tion [1, 27, 28, 32–34, 40]. For example, Liu et al. [5] synthesized highly ordered

mesoporous carbon spheres arranged in a face-centered cubic structure and used

them as electrodes for EDLCs. Mesopores with hexagonal cross-section existed in

the carbon spheres and aligned toward the sphere center [5]. The diameters of the

mesoporous carbon spheres and their mesopores were 250 nm and 10.4 nm, respec-

tively while the total specific surface area was reported to be 601 m2/g [5]. The

electrolyte was (C2H5)4NBF4 in propylene carbonate non-aqueous solution [5].

The capacitance of the mesoporous carbon spheres was measured using both cyclic
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voltammetry and galvanostatic charge/discharge. The capacitance measured by

cyclic voltammetry at low scan rate (1 mV/s) was identical to results obtained

using galvanostatic method [5]. The authors reported the specific area capaci-

tance of 10.8, 12.6, and 14.0 µF/cm2 under voltage of 1.5 V for the electrolyte

concentrations of 0.3, 0.5, and 1.0 mol/L, respectively [5].

Numerous experimental studies have been devoted to characterizing the per-

formances of EDLCs and their dependence on the material, morphology, and pore

size of the porous electrodes, as well as on the ion size and solvent of the elec-

trolyte [37,39,42,43,203–212]. It is believed that the optimal electrode morphology

should provide both large surface area and “appropriate pore size” [1, 33]. How-

ever, it remains unclear how the electrode morphology affects the capacitance of

EDLCs [1,85,86].

The equivalent RC circuit models [122, 124, 125, 127] and homogeneous mod-

els [132–145] have been used to numerically predict and investigate the perfor-

mance of EDLCs. However, the equivalent RC circuit models require prior knowl-

edge of macroscopic parameters such as the resistance and capacitance of the

device which are typically determined experimentally or by other methods. More-

over, the classical RC circuit models may not be valid for EDLCs since this ap-

proach inherently neglects ion diffusion and non-uniform ion concentration in the

electrolyte [128–130]. Alternatively, homogeneous models were also developed to

investigate the charging/discharging dynamics of EDLCs. These models treat

the heterogeneous microstructure of the electrodes as homogeneous with some ef-

fective macroscopic properties determined from effective medium approximations

and depending on porosity and specific area [133–145]. In addition, they typically

impose specific area capacitance or volumetric capacitance rather than predict

them [133–145]. In addition, none of the RC and homogeneous models mentioned

accounts for the detailed mesoporous electrode morphology.

Moreover, Yang et al. [213] performed molecular dynamics (MD) simulations
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of EDLCs made of 390 single-wall carbon nanotubes with diameter of 0.67 nm.

Their results showed that the capacitance increases “modestly” with decreasing

pore diameter larger than 2 nm. This qualitatively supported the experimental

results reported for mesoporous carbide-derived carbon electrodes [37]. However,

MD simulations are inadequate to perform extensive and systematic study of

EDLCs due to their computational cost and time requirement.

This chapter aims to clarify the fundamental physical mechanisms to be ac-

counted for in simulating EDLCs. Three-dimensional (3D) equilibrium and het-

erogeneous model based on continuum theory was developed to predict the specific

area capacitance of electrodes made of closely-packed spheres and of cylindrical

mesopores immersed in an electrolyte. It is unique in that it accounts for (i) the

accurate electrode morphology, (ii) the non-uniform ion concentration and elec-

tric potential distribution in the electrolyte, as well as (iii) the dependency of the

electrolyte dielectric permittivity on the electric field.

4.2 Analysis

4.2.1 Schematics and Assumptions

The actual geometry of the mesoporous carbon electrodes synthesized in Ref. [5]

was quite complex. In order to simplify the simulations while accurately ac-

counting for the electrode morphology, the problem was divided in two uncoupled

problems simulating (1) non-porous (i.e. dense) carbon spheres arranged in peri-

odic packing, and (2) a single mesopore inside a carbon matrix. This approach

is supported by the following facts: (i) under equilibrium conditions, the electric

potential is uniform across all the electrode particles. Thus, the electric poten-

tials at the outer surface of the carbon spheres and the inner pore walls were

identical. (ii) The electric potential in the electrolyte solution decreased rapidly

to zero away from the electrode surface as discussed in Section 4.3.2. Therefore,
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it suffices to consider the dense spheres and mesopores separately while imposing

the same potential at the sphere or mesopore surface and zero potential far-away

in the electrolyte solution.

Figure 4.1 shows the schematic of a representative computational domain of

closely-packed dense spheres. Only the domain consisting of the electrodes and

the electrolyte solution was considered thus, ignoring the current collector. The

electrodes consisted of dense monodispersed carbon spheres arranged in simple

cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) packings.

Due to the periodicity, only a representative region of the entire electrode was

considered with the width and height equal to that of one unit cell. Moreover, only

a quadrant of a lattice unit cell was simulated by virtue of symmetry (Figure 4.1).

Figures 4.1a through c illustrate the computational domain corresponding to five

unit cells with SC, BCC and FCC packings, respectively. The distance separating

the anode and cathode (separator) was always specified as 100 nm. Increasing

the distance to 200 nm was found to have no effect on the predicted equilibrium

capacitance. Note, however, that this distance would have a significant effect

on transient simulations of the EDLC devices [139, 140, 214]. In addition, it is

sufficient to simulate only half of the entire device and consider only the anode,

for example, due to antisymmetry in the electric potential.

Moreover, Figure 4.2 shows the schematic of the computational domain of one

mesopore in a mesoporous carbon sphere. Assuming the electric potential to be

the same across the solid phase of the mesoporous spheres, it suffices to simulate

only one mesopore. Mesopores with either hexagonal or circular cross-section were

simulated. The length of the mesopore was denoted by L and varied from 50 to

250 nm since its exact length remained unknown [5]. An additional electrolyte

region was specified on one end of the mesopore with L < 250 nm corresponding

to the space between adjacent carbon spheres (Figure 4.2b). Due to symmetry,

the length of this region was specified as 30 nm corresponding to half of the
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Figure 4.1: Schematic, dimensions, and coordinate system of the computational

domain simulated for carbon spheres with (a) SC, (b) BCC, and (c) FCC packings.

Shaded areas represent carbon spheres of diameter d. Five unit cells are shown

here for illustration purposes.

“interconnected window” between carbon spheres of 250 nm in diameter [5]. For

mesopores going through the entire sphere (L = 250 nm), a 30 nm thick electrolyte

region was specified at both ends of the pore (Figure 4.2c).

To make the problem mathematically tractable, the following assumptions

were made: (1) the electric potential and ion concentration were invariant with

time (steady state) and reached their equilibrium states, (2) all the electrode parti-

cles were at the same potential since there is no electric current under equilibrium
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Figure 4.2: Schematic and dimensions of the computational domain simulated for

(a) one mesopore within a carbon sphere of (b) hexagonal cross-section with pore

length L < 250 nm, and (c) circular cross-section with pore length L = 250 nm.

conditions, (3) anions and cations had the same effective diameter [4, 95–97], (4)

isothermal conditions were assumed throughout the electrolyte solution and the

carbon spheres, (5) advection of the electrolyte was assumed to be negligible, (6)

the ions could only accumulate at the electrode surfaces and could not diffuse

into the solid phase of carbon particles constituting the electrodes. In fact, in the

cyclic voltammetry experiments reported in Ref. [5], no pseudocapacitive peak

was observed in the C-V curves. Therefore, ion insertion contribution to the elec-

trode capacitance was considered negligible [9, 10], and (7) the continuum theory

was assumed to be valid for all the cases considered in this study. Its validity has
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been examined in the literature [215–218] and is typically accepted when the pore

diameter is larger than 3− 5 nm [215–218].

4.2.2 Governing Equation and Boundary Conditions

Based on assumptions (2) and (6), the governing equations only need to be solved

within the electrolyte solution. The local steady-state and equilibrium electric

potential in the diffuse layer, denoted by ψ(x, y, z), can be found by solving the

modified Poisson-Boltzmann (MPB) model accounting for the finite size of the

ions [4, 95–97, 99]. Among different MPB models, Bikerman’s model was the

simplest developed for symmetric electrolytes and was expressed as [4,95–97,99],

∇ · (ϵ0ϵr∇ψ) = zeNAc∞

2 sinh

(
zeψ

kBT

)
1 + 2νp sinh

2

(
zeψ

2kBT

) (4.1)

where ϵ0 and ϵr are the free space permittivity and relative permittivity of the

electrolyte, respectively. The valency of the symmetric electrolyte is denoted by

z, while T is the absolute temperature, c∞ is the bulk molar concentration of

electrolyte, e is the elementary charge, NA and kB are the Avogadro constant

and Boltzmann constant, respectively. The packing parameter is defined as νp =

2a3NAc∞ where a is the effective ion diameter. It represents the ratio of the total

bulk ion concentration to the maximum ion concentration assuming a simple cubic

ion packing [4, 95, 102, 130]. Therefore, it should not be larger than unity for the

model to be physically acceptable [102,130].

The boundary conditions associated with Equation (4.1) correspond to exper-

imental conditions where the electric potential was set to be constant and equal

to ψs and −ψs at the anode and cathode, respectively. By virtue of symmetry of

the geometry and antisymmetry in the electric potential, only half of the entire

domain was simulated (Figure 4.1). Then, the boundary conditions can be written
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as,

ψ(ra) = ψs and ψ(rs) = 0 (4.2)

where ra and rs denote the position vectors of the electrode/electrolyte interfaces

for the anode and the center plane of the separator, respectively. In addition,

symmetric conditions were imposed at all the other boundaries.

4.2.3 Constitutive Relations

In order to solve Equations (4.1) and (4.2), the electrolyte properties ϵr, z, c∞ and

a are needed. The relative permittivity ϵr of polar electrolytes may significantly

decrease as the electric field increases [189–193]. In fact, the individual electrolyte

molecules become highly oriented under large electric field. Therefore, further

orientation of the molecules can hardly provide more polarization and the relative

permittivity decreases [191–193]. Here, the Booth model [189–191] was used to

account for the effects of the electric field on electrolyte relative permittivity. It

is expressed as [189–191],

ϵr(E) = n2 +
(
ϵr(0)− n2

) 3

βE

[
coth(βE)− 1

βE

]
for E ≥ 107 V/m(4.3a)

ϵr = ϵr(0) for E < 107 V/m (4.3b)

where E = |−∇ψ| is the norm of the local electric field vector, ϵr(0) is the relative

permittivity at zero electric field, and n is the index of refraction of the electrolyte

at zero electric field frequency.

The Booth model was combined with Poisson equation in Refs. [196–198] to

investigate the repulsion between two charged planar surface electrodes due to

hydration forces in aqueous electrolyte solutions. However, to the best of our

knowledge, the present study is the first to combine field-dependent permittivity

and Poisson equation for simulating EDLCs. It focuses on (C2H5)4NBF4 elec-

trolyte in propylene carbonate solution at room temperature characterized by the
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following properties: ϵr(0) = 64.4 [219], n = 1.42 [220], and z = 1. Moreover,

the parameter β in Equation (4.3a) was determined by least-square fitting for the

relative permittivity of propylene carbonate reported in Ref. [3] and obtained by

MD simulations. Figure 4.3 shows the relative permittivity of propylene carbon-

ate predicted by the Booth model with β = 1.314 × 10−8 m/V along with the

predictions from MD simulations [3]. The maximum relative difference was found

to be less than 7% for electric field between 0 and 4× 109 V/m.
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Figure 4.3: Comparison of the relative permittivity of propylene carbonate elec-

trolyte predicted by Booth model [Equation (4.3)] with β = 1.314 × 10−8 m/V

with predictions from MD simulations reported in Ref. [3]. The maximum relative

difference was less than 7%.

Finally, the values of electrolyte concentration c∞ used in the simulation were

the same as those used in Ref. [5], i.e., c∞ = 1.0 mol/L. The ion diameter of

non-solvated (C2H5)4N
+ and BF−

4 ions was reported to be amin = 0.68 nm and
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0.33 nm [37, 221], respectively. However, as discussed in Ref. [95, 222], “Smaller

bare ions tend to be more heavily solvated and therefore have larger effective di-

ameters”. Here, the effective ion diameters of (C2H5)4N
+ and BF−

4 were assumed

to be equal. In addition, when the electrolyte concentration decreases, the dis-

solved electrolyte ions are more solvated, i.e., they are surrounded by more solvent

molecules [5,223–226]. Consequently, the effective diameter a of the ions may de-

crease with increasing electrolyte concentration [5,224,226]. Considering the fact

that the solubility of (C2H5)4NBF4 in propylene carbonate is about 1 mol/L at

room temperature [227], the effective ion diameter a was assumed to be equal

to a = 0.68 nm. The other parameters needed to perform the simulations were

also chosen to be consistent with those used experimentally, i.e., T = 298 K, and

2ψs = 1.5 V [5].

4.2.4 Method of Solution And Data Processing

Equation (4.1) was solved using the commercial finite element solver COMSOL

3.5a, along with the boundary conditions given by Equation (4.2). The model was

solved for constant permittivity ϵr(0) or field-dependent permittivity ϵr(E) given

by Equation (4.3). The simulations were run on a Dell workstation Precision 690

with two 2.66 GHz Quad-Core Intel Xeon CPUs and 40 GB of RAMs.

The total amount of charges Q stored at the anode was computed by integrat-

ing the surface charge density (ϵ0ϵrE · n) along the anode/electrolyte interfaces

as [35,201],

Q =

∫
Aa

ϵ0ϵrE · n dA (4.4)

where E = −∇ψ is the electric field vector, n is the local outward normal unit

vector at the anode/electrolyte interfaces. The interfacial surface area Aa of dense

sphere packings was the sum of the surface area of the carbon spheres and of

the current collector. For the single pore simulations, Aa was the surface area
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of the mesopore. The absolute amount of charges computed at the anode and

cathode were identical due to symmetry in geometry and to the anti-symmetry

of the electric potential. The capacitance of the diffuse layer of the simulated

EDLC from single electrode was estimated as CD = Q/ψs while its specific area

capacitance CD
s was given by,

CD
s =

CD

Aa

=
Q

ψsAa

=
1

ψsAa

∫
Aa

ϵ0ϵrE · n dA (4.5)

Moreover, the total specific area capacitance of electric double layer, denoted

by Cs, consists of the Stern layer capacitance and of the diffuse layer capacitance

in series. It is expressed as [9, 10,36],

1

Cs

=
1

CSt
s

+
1

CD
s

(4.6)

where CSt
s is the Stern layer specific area capacitance which can be estimated

as [9, 10,36],

CSt
s =

ϵ0ϵr
H

(4.7)

where H is the thickness of the Stern layer. It can be approximated as the radius

of the solvated ions [9, 35, 36, 92] while ϵr is the average dielectric permittivity

along electrode surface defined as,

ϵr =
1

Aa

∫
Aa

ϵr(E) dA (4.8)

Here, ϵr(E) is determined by Equation (4.3) based on the local electric field at the

electrode surface computed numerically. Note that here, the potential drop in the

Stern layer was neglected. The same approach was used by Bazant et al. [95] to

predict the differential double layer capacitance of Ag electrode in KPF6 aqueous

electrolyte solution. Nevertheless, Wang and Pilon [228] found that the predicted

diffuse layer specific area capacitance vs. electrode diameter without Stern layer

featured the same trend as that accounting for potential drop in the Stern layer.
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Finally, numerical convergence was assessed based on the total amount of

charges Q accumulated at the electrode/electrolyte interfaces. For the simula-

tion of packed carbon spheres, the convergence criterion was chosen such that the

maximum relative difference in Q was less than 2% and 6% for constant permit-

tivity and field-dependent permittivity, respectively, when multiplying the total

number of finite elements by at least two. For the simulation of mesopores, this

convergence criterion was chosen to be 2.5% for both constant and field-dependent

dielectric permittivity. The tetrahedral elements were used in all the meshes gen-

erated. Mesh refinement was required near the electrode surfaces where the large

potential gradient was large. The maximum element size to reach a converged

solution was about 0.08 − 0.2 nm at all electrode surfaces. The total number of

finite elements depended on the electrode morphology (SC, BCC, FCC) and on

the number of unit cells simulated, as well as on the model used for ϵr. The num-

ber of finite elements was on the order of 105 to 106 in the simulations of densely

packed spheres when assuming constant ϵr. It was one order of magnitude larger

for field-dependent ϵr predicted by Equation (4.3) due to larger potential gra-

dient near the electrode surfaces as discussed in Section 4.3.3. In addition, the

number of elements was on the order of 105 to 106 for the single-pore simulations

depending on the pore length and for both constant and field-dependent ϵr.

4.3 Results and Discussions

4.3.1 Effect of Electrode Thickness On Diffuse Layer Capacitance

The effect of the number of unit cells on the diffuse layer specific area capacitance

CD
s was first investigated for SC, BCC, and FCC packings and for electrode spheres

with diameter equal to 5, 10, 20, 40, 60, 80 and 100 nm. For each packing

morphology and sphere diameter, the number of unit cells was increased from 1

to 5. The diffuse layer specific area capacitance CD
s computed when assuming
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constant electrolyte permittivity decreased slightly when increasing the number

of unit cells and rapidly reached a plateau (not shown). The effect of the number

of unit cells simulated on CD
s was smaller for large particle diameter. In fact, for

particle diameter d = 20 nm, the relative difference in CD
s between 2 and 5 unit

cells was found to be less than 2%.

In cases when ϵr dependency on electric field was accounted for through Equa-

tion (4.3), this difference was less than 3% for all sphere diameters and packing

morphologies considered. Therefore, the diffuse layer capacitance CD
s computed

for mesoporous electrodes can be assumed to be independent of the number of

unit cells simulated.

4.3.2 Effect of Electrode Morphology

Figure 4.4 shows the computed electric potential contours in two representative

cross-sections perpendicular to the x-axis in the computational domain for the

SC packing with five spheres of diameter d = 10 nm. Their x-coordinates were

(a) x = −d/2, and (b) x = −d, respectively. Results were obtained assuming

constant permittivity (ϵr = 64.4), c∞ = 1 mol/L, a = 0.68 nm and ψs = 0.75 V.

Figure 4.4 demonstrates that the electric potential decreased rapidly to zero away

from the electrode surface. Note that the nearly identical contours were observed

periodically along the x-axis for −5d < x < 0 (Figure 4.1a).

Figure 4.5 shows the computed diffuse layer specific area capacitance CD
s for

sphere diameter ranging from 5 to 100 nm obtained assuming constant permittiv-

ity (ϵr = 64.4), c∞ = 1 mol/L, and a = 0.68 nm for SC, BCC, and FCC packings.

It is evident that CD
s increased with particle diameter for all three morphologies

simulated and rapidly reached a plateau. This can be attributed to the fact that

(i) the electric potential ψ in the electrolyte solution was maximum at the elec-

trode surface and decreased rapidly away from it, (ii) the electric double layer of
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Figure 4.4: Numerically predicted electric potential contours at two representative

cross-sections perpendicular to the x-axis for the SC packing with five spheres with

diameter of d = 10 nm. Their x-coordinates were (a) x = −d/2, and (b) x = −d.

Electrolyte concentration was set as c∞ = 1.0 mol/L, electrolyte permittivity was

assumed to be constant (ϵr = 64.4), a = 0.68 nm and ψs = 0.75 V.
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adjacent spheres started overlapping as the particles got closer to one another, and

(iii) the distance between surfaces of adjacent electrode particles increased with

particle diameter. Overall, larger electrode particle diameter resulted in larger

electric field (E = −∇ψ) at the electrode surface and thus larger CD
s , according

to Equation (4.5). The asymptotic value of CD
s , represented by the solid line in

Figure 4.5, corresponds to that of planar electrodes assuming constant electrolyte

permittivity and given by [4,95,102],

CD
s =

2zeNAc∞λD
ψs

√
2

νp
log

[
1 + 2νp sinh

2

(
zeψs

2kBT

)]
(4.9)

where λD is the Debye length for symmetric electrolyte defined as

λD = (ϵ0ϵrkBT/2e
2z2NAc∞)1/2 [4, 35, 95]. For the cases considered in Figure 4.5,

Equation (4.9) predicts CD
s = 85.4 µF/cm2. In addition, the specific area As of the

mesoporous electrode is defined as the total surface area Aa divided by the mass

of the electrode and is expressed in m2/g. It decreases with increasing particle

diameter. Therefore, the numerical predictions in Figure 4.5 were consistent with

the experimental results reported in Ref. [205] showing that the total specific area

capacitance Cs decreased with increasing specific area.

Moreover, for a given particle diameter, SC packing featured the largest diffuse

layer specific area capacitance CD
s and FCC packing the lowest (Figure 4.5). In-

deed, SC packing has the largest electrolyte volume fraction, thus it provides the

largest inter-particle distance through which the electric potential decreases. This

results in larger electric field and surface charge density at the electrode/electrolyte

interfaces and consequently, larger diffuse layer specific area capacitance CD
s com-

pared with other packings. On the contrary, FCC packing has the lowest elec-

trolyte volume fraction. Thus, it features the lowest electric field, surface charge

density and diffuse layer specific area capacitance. To confirm this physical in-

terpretation, Figures 4.6a and 4.6b respectively show the numerical predictions of

the local electric potential and the norm of electric field vector along a straight
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Figure 4.5: Numerically predicted diffuse layer specific area capacitance CD
s for

SC, BCC, and FCC packings. Electrolyte concentration was set as c∞ = 1.0

mol/L, electrolyte permittivity was assumed to be constant (ϵr = 64.4) and

a = 0.68 nm. Solid line represents the theoretical value of CD
s for planar elec-

trodes given by Equation (4.9) [4]. Dashed line shows experimental data reported

for identical electrolyte and mesoporous carbon spheres with 250 nm in diameter

in a FCC packing [5].

line passing through SC, BCC, and FCC packings with five unit cells for sphere

diameter d = 5 nm. For each packing morphology, the straight line was chosen

such that it was parallel to the x-axis and touched the surface of the spheres.

More specifically, the (y, z) coordinates of each plotting line were given by (i)

[(d/2) cos 45◦, (d/2) sin 45◦] for SC packing, (ii) [d/2, 0] for BCC packing, and (iii)

[(d/2) cos 45◦, (d/2) sin 45◦] for FCC packing. The maximum value of the electric

potential shown in Figure 4.6a was 0.75 V corresponding to ψs at the surface of

the electrode particles. Figure 4.6a establishes that the electric potential varied

significantly from 0.18 to 0.75 V between electrode spheres for SC packing while
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it oscillated only between 0.67 and 0.75 V for FCC packing. Consequently, the

electric field was the largest between spheres with SC packing and the smallest

between those with FCC packing as shown in Figure 4.6b. Note also that the elec-

tric potential and electric field in the electrolyte decreased rapidly to zero away

from the boundary of mesoporous electrodes located in the plane x = 0. Fur-

ther increasing the separator thickness did not affect the electric potential profile

at the electrode surface. Thus the predicted specific area capacitance CD
s was

independent of the separator thickness.

Furthermore, Figure 4.5 demonstrates that the difference in diffuse layer spe-

cific area capacitance CD
s among the three morphologies decreased with increasing

particle diameter. In fact, CD
s reached nearly the same value for all morphologies

for particle diameter larger than 100 nm. This establishes that the packing of the

electrode spheres has no significant effect on diffuse layer specific area capacitance

for the electrode particle diameter larger than 100 nm when assuming constant

electrolyte permittivity. However, note that the diffuse layer gravimetric capac-

itance CD
g (= CD

s As) decreased with increasing particle diameter for all packing

morphologies (not shown) due to the decrease in specific area. This is also con-

sistent with experimental data for the total gravimetric capacitance reported in

the literature [32, 33,203,205–207,211].

4.3.3 Effect of Electric Field On Dielectric Permittivity

Figures 4.6c and 4.6d respectively show the electric potential and the norm of

the electric field along the same lines as those previously discussed for SC, BCC,

FCC structures. Here, the results were obtained using field-dependent dielectric

permittivity given by Equation (4.3) while all other parameters including a =

0.68 nm were identical to those used for results shown in Figures 4.6a and 4.6b.

The local electric potential and the norm of the electric field followed the same

trend as that shown in Figures 4.6a and 4.6b. However, the norm of electric field
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plotted in Figure 4.6d was almost one order of magnitude larger than that obtained

assuming constant electrolyte permittivity (Figure 4.6b). This can be explained

by examining Equation (4.1). The term on the right-hand side was constant at

the electrode/electrolyte interfaces where ψ = ψs. Therefore, the electric field

(E = −∇ψ) at the electrode/electrolyte interfaces, appearing on the left-hand

side must increase to compensate for the decrease in dielectric permittivity ϵr at

large electric field (Figure 4.3).

Figure 4.7 shows the computed diffuse layer specific area capacitance CD
s ob-

tained as a function of electrode particle diameter using field-dependent permit-

tivity [Equation (4.3)] as well as c∞ = 1 mol/L and a = 0.68 nm for SC, BCC

and FCC packings. The computed capacitance CD
s followed the same trend as the

results predicted assuming constant permittivity (Figure 4.5) for all morphologies

and particle diameters. However, it was significantly smaller when using field-

dependent permittivity. In addition, CD
s reached a plateau for smaller particle

diameter around 40 nm instead of 100 nm when assuming constant permittivity.

The asymptotic value of CD
s , represented by the solid line in Figure 4.7, corre-

sponds to the diffuse layer specific area capacitance of a planar electrode. It was

found to be 30.8 µF/cm2 by using Equation (4.5) after solving Equation (4.1)

combined with field-dependent permittivity [Equation (4.3)]. For d = 40 nm, the

maximum relative difference in CD
s for the three morphologies was less than 6%.

Here also, the effect of electrode packing morphology on the diffuse layer specific

capacitance can be neglected as the electrode particle diameter increases. More-

over, the value of CD
s predicted for FCC packing of carbon spheres larger than 40

nm was found to be 27.6 µF/cm2.

Figure 4.8 shows the computed diffuse layer specific area capacitance CD
s of

a mesopore with hexagonal or circular cross-section as a function of pore length

obtained using constant and field-dependent electrolyte permittivity. It indicates

that CD
s slightly increased with pore length. Changing the pore cross-section from
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Figure 4.6: Numerically predicted electric potential ψ and norm of electric field

(E = |−∇ψ|) as a function of x along a straight line for SC, BCC, and FCC pack-

ings with five unit cells and spheres of 5 nm in diameter. Results were obtained

using (a, b) constant permittivity (ϵr = 64.4), and (c, d) field-dependent permit-

tivity given by Equation (4.3) with electrolyte concentration c∞ = 1.0 mol/L, and

a = 0.68 nm.

hexagonal to circular resulted in minor differences in CD
s . This difference decreased

with increasing pore length and was insignificant for pore longer than 100 nm. The

diffuse layer capacitance of hexagonal and circular pores predicted using field-

dependent permittivity ranged from 26.0 to 29.8 µF/cm2. This was consistent
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Figure 4.7: Numerically predicted diffuse layer specific area capacitance CD
s for

SC, BCC, and FCC packings. Electrolyte concentration was set as c∞ = 1.0

mol/L, electrolyte permittivity was given by Equation (4.3) and a = 0.68 nm.

Dashed line shows experimental data (14.0 µF/cm2) reported for identical elec-

trolyte and mesoporous carbon spheres with 250 nm in diameter in a FCC pack-

ing [5].

with the diffuse layer specific area capacitance of 27.6 µF/cm2 predicted for carbon

spheres arrays without mesopores arranged in FCC packing (Figure 4.7). Here

again, the numerical predictions assuming constant permittivity were significantly

larger than the predictions using field-dependent permittivity. The solid line in

Figure 4.8 is the same asymptotic value of CD
s = 30.8 µF/cm2 for planar electrodes

shown in Figure 4.7. This demonstrates that the closely-packed dense spheres

and the mesopores feature the same diffuse layer specific area capacitance when

the diameters of the electrode particles and of the mesopores are large enough

regardless of the morphology and porosity.
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Figure 4.8: Numerically predicted diffuse layer specific area capacitance CD
s for

one mesopore as a function of mesopore length assuming hexagonal and circular

cross-section with diameter 10.4 nm. Electrolyte concentration was set as c∞ = 1.0

mol/L, and a = 0.68 nm. Dashed line shows experimental data (14.0 µF/cm2)

reported for identical electrolyte and mesoporous carbon spheres with 250 nm in

diameter in a FCC packing [5].

4.3.4 Comparison With Experimental Data

The capacitance measured from cyclic voltammetry at small scan rate (e.g. < 10

mV/s) is analogous to the equilibrium capacitance [5,214]. Therefore, the equilib-

rium capacitance computed using Equation (4.6) can be directly compared with

experimental results reported in Ref. [5] for the scan rate of 1 mV/s. In addition,

previous discussion (Section 4.3.1) established that predicted total specific area ca-

pacitance of mesoporous electrodes with more than two unit cells can be compared

with actual experimental data where electrodes were thick (> 20 µm [39,207,208])

and typically consisted of a large number of unit cells [5].
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For FCC packing of dense spheres with diameter of 40 nm, Equation (4.8)

yields ϵr = 7.8. Using H = a/2 = 0.34 nm as the Stern layer thickness, Equation

(4.7) predicted CSt
s = 20.3 µF/cm2 while CD

s = 27.6 µF/cm2. Thus, the total spe-

cific area capacitance was Cs = 11.8 µF/cm2. This value is similar to experimen-

tal measurements reporting Cs = 14.0 µF/cm2 for mesoporous carbon spheres [5].

This demonstrates that the Stern layer capacitance needs to be accounted for in

predicting the capacitance of EDLCs with large electrolyte concentrations and

electric potentials such that c∞ ≥ 1 mol/L and ψs ≥ 0.5 V.

Finally, one should be careful in extending the conclusions drawn from the

present simulations to micropores with diameter less than 2 nm for the following

two reasons: (i) the diffuse layer may not exist in such small pores and (ii) the

continuum theory and the Bikerman model [Equation (4.1)] may not be valid. In

fact, Chmiola et al. [37] observed an anomalous increase in capacitance for the

pore diameter less than 1 nm. This phenomenon was explained by the adsorption

of desolvated ions in micropores [37,39]. In these conditions, atomistic simulations

may be more appropriate such as that performed in Ref. [213].

4.4 Conclusion

This chapter presented numerical simulations of EDLCs with electrodes made of

closely-packed monodispersed mesoporous spheres. For the first time, 3D hetero-

geneous mesostructures were modeled based on continuum theory to investigate

the capacitance of EDLCs while accounting for the accurate electrode morphology

and the effect of electric field on electrolyte permittivity. To simplify the problem,

both dense carbon spheres in SC, BCC, and FCC packings and a single mesopore

with hexagonal and circular cross-sections in a carbon sphere were simulated. The

following conclusions can be drawn:

1. The field-dependent permittivity ϵr(E) significantly affects the predicted
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diffuse and Stern layer capacitances of EDLCs.

2. The Stern layer capacitance needs to be accounted for in order to find

good agreement between the predicted and experimental specific area capac-

itance [5] for high electrolyte concentrations and electric potentials typically

encountered in EDLCs.

3. For a given sphere packing, the diffuse layer specific area capacitance in-

creased with increasing diameter. Larger spheres provided more space for

the electric potential to decrease resulting in larger electric field at the elec-

trode surface, and therefore larger diffuse layer specific area capacitance.

4. The electrode morphology (SC, BCC, FCC) was found to have no significant

effect on the diffuse layer specific area capacitance for sphere diameter larger

than 40 nm.

5. SC packing featured the largest diffuse layer specific area capacitance com-

pared with BCC and FCC packings due to larger electric field at the elec-

trode surface for sphere diameter smaller than 40 nm.

6. The diffuse layer specific area capacitance of closely-packed dense spheres

and mesopores reached the same asymptotic value corresponding to that of

planar electrodes when sphere and pore diameter was larger than 40 and 10

nm, respectively.
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CHAPTER 5

Equilibrium Modeling of EDLCs With 3D

Ordered Mesoporous Structures

The previous chapter presented the first simulation of EDLCs with three-dimensional

electrode morphology. However, the simulation of carbon spheres and cylindrical

mesopores as well as the computation of Stern and diffuse layer capacitances were

separated due to the complex electrode structures. This chapter presents a gen-

eralized approach to simulate EDLCs with three-dimensional ordered structures

while rigorously and simultaneously accounting for the Stern and diffuse layers as

well as the field-dependent electrolyte permittivity.

5.1 Introduction

Electrodes in actual EDLCs are typically made of mesoporous materials offering

large surface area. Research efforts have focused on increasing the energy and

power densities of supercapacitors by increasing the surface area of porous elec-

trodes and tailoring their morphology or pore size distribution [27,31–34]. In par-

ticular, electrodes with three-dimensional ordered structures [5,6,42,204,229–242]

have attracted significant attentions due to [176,204,239–243] (1) their small ion

transport resistance, (2) their uniform pore connection leading to short ion diffu-

sion length, and (3) their continuous electron transport framework. For example,

Woo et al. [6] synthesized highly-ordered mesoporous carbon films as electrodes

for EDLCs. These carbon films had ordered “bimodal” structure featuring both

interconnected macropores and mesopores. In particular, their “CP204-S15” car-
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bon film had specific surface area of SBET = 1003 m2 g−1 [6]. The radius of the

macropores and mesopores was reported to be 95 nm and 7 nm [6], respectively.

The surface area due to micropores with diameter around or less than 2 nm was

less than 6% [6]. From the FE-SEM image (Figure 3a in Ref. [6]), the radius of the

channels between macropores in “CP204-S15” carbon film was estimated to be 20

nm while the carbon wall thickness was about 2 nm. The electrolyte was 1 mol L−1

(C2H5)4NBF4 (or TEABF4) in propylene carbonate while the potential window

was 2 V. The capacitances were measured using galvanostatic charge/discharge at

low current density 40 mA g−1 using the three-electrode method [6]. Finally, the

areal and gravimetric capacitances for the “CP204-S15” carbon film were reported

to be Cs = 9.4 µF cm−2 and Cg = 95 F g−1, respectively [6].

Numerous experimental studies have been devoted to characterizing the per-

formances of EDLCs and assessing the effects of electrode morphology as well

as of the physical or electrochemical properties of electrodes and electrolytes

[5,6,27,31–34,42,204,229–242]. Experimental approaches are typically time con-

suming and costly. They also rely on trial and errors in order to optimize EDLCs.

On the contrary, accurate and reliable numerical tools can facilitate the design

and optimization of the electrode morphology in a more systematic and efficient

way. Moreover, they can be used to understand the electrochemical and trans-

port processes involved in EDLCs [148, 149]. For example, they can predict the

local electric potential and ion concentrations throughout the mesoporous elec-

trodes [199, 228, 244] which cannot be measured experimentally. However, such

numerical simulations are complicated by the multi-scales (from subnanometer to

micron) and multi-physics nature of the problem. They should also be validated

against experimental data.

The present chapter aims to develop a three-dimensional (3D) model based

on continuum theory for simulating EDLCs with ordered mesoporous electrode

structures. For the first time, the model simultaneously and rigorously accounts
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for (1) 3D electrode morphology, (2) finite ion size, (3) Stern and diffuse layers, and

(4) the dependency of the electrolyte dielectric permittivity on the local electric

field. First, a new set of boundary conditions was derived to account for the Stern

layer without simulating it in the electrolyte domain. The model was then used

to simulate faithfully the electrode morphology of CP204-S15 mesoporous carbon

EDLC synthesized and characterized by Woo et al. [6].

5.2 Background

5.2.1 Traditional Modeling Approaches

The Helmholtz model [85–87] and Gouy-Chapman-Stern (GCS) model [94] are

frequently used to simulate EDLCs with one- or two-dimensional electrode struc-

ture. In these models, the electrolyte dielectric permittivity is either assumed to

be constant [87, 94] or treated as a fitting parameter [85–87]. However, the rela-

tive permittivity ϵr of polar electrolytes is known to significantly decrease as the

electric field increases [189–191]. In addition, the GCS model neglects the finite

size of ions and treat ions as point-charges [4, 95, 199, 228, 244]. This assumption

breaks down when either the electrolyte concentration c∞ or the electric poten-

tial is large [4, 95, 148, 149, 199, 228, 244]. Therefore, the GCS model is invalid for

practical EDLCs with typical electrolyte concentration larger than 1 mol L−1 and

potential window larger than 1 V [228].

Due to their intrinsic limitations, none of the above-mentioned models can

account for the three-dimensional mesoporous electrode morphology of practi-

cal EDLCs. The first equilibrium simulations of EDLCs with three-dimensional

electrode morphology were reported by Pilon and co-workers [199, 244]. These

simulations also accounted for finite ion size as well as the dependency of the elec-

trolyte dielectric permittivity on the local electric field [199, 244]. However, the

computations of the Stern and diffuse layer capacitances were decoupled due to
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the complex electrode structures [199, 244]. Our recent study indicated that the

Stern and diffuse layer need to be simulated simultaneously in order to predict

accurately the electric double layer capacitances [228]. In the previous literature,

the Stern and diffuse layers have been simultaneously simulated only for one- or

two-dimensional electrode structures such as planar electrodes [148, 149] and a

single cylindrical or spherical electrode particle or pore [85–87,94,228].

Under equilibrium conditions, the local electric potential ψ(r) at location r in

the electrolyte can be found by solving the modified Poisson-Boltzmann (MPB)

model with a Stern layer accounting for the finite ion size and expressed as [4, 7,

95,228],

∇ · (ϵ0ϵr∇ψ) =


0 in the Stern layer (5.1a)

2z0eNAc∞ sinh

(
z0eψ

kBT

)
1 + 2νp sinh

2

(
z0eψ

2kBT

) in the diffuse layer (5.1b)

Then, the local ion concentration c(r) is given by [4, 7, 95]

c(r) =
c∞ exp (−z0eψ/kBT )

1 + 2νp sinh
2

(
z0eψ

2kBT

) (5.2)

where ϵ0 and ϵr are the free space permittivity (ϵ0 = 8.854×10−12 F m−1) and the

relative permittivity of the electrolyte solution, respectively. The valency of the

symmetric electrolyte is denoted by z0, while c∞ is the bulk molar concentration of

electrolyte, T is the absolute temperature, e is the elementary charge (e = 1.602×

10−19 C),NA and kB are the Avogadro’s number (NA = 6.022×1023 mol−1) and the

Boltzmann constant (kB = 1.381×10−23 m2kg K−1s−2), respectively. The packing

parameter is defined as νp = 2a3NAc∞ where a is the effective ion diameter.

It represents the ratio of the total bulk ion concentration to the maximum ion

concentration cmax = 1/NAa
3 assuming a simple cubic ion packing [4, 95, 130].

Therefore, νp should not be larger than unity for the model to be physically

acceptable.
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5.2.2 Conventional Boundary Conditions

Boundary conditions are required to predict the electric potential and ion concen-

tration profile in the electrolyte. The electric potential at the electrode/electrolyte

interface is typically prescribed under equilibrium conditions [8, 9, 35, 36, 95, 146,

199,228]. For a sphere or cylinder of radius R0, it is given by

ψ(r = R0) = ψs, (5.3a)

In addition, the electric potential and displacement are continuous across the

Stern/diffuse layer interface located at r = R0 +H so that [8, 90,148,149],

ψ(r = R0 +H−) = ψ(r = R0 +H+) and

ϵ0ϵr
dψ

dr
(r = R0 +H−) = ϵ0ϵr

dψ

dr
(r = R0 +H+) (5.3b)

Far away from the electrode surface, the electric potential and ion concentration

are constant such that [128,148,149,199,228,244],

ψ(r = R0 + L) = 0 and ci(r = R0 + L) = c∞ (5.3c)

In fact, the presence of the very thin Stern layer near the electrode surface

causes several numerical challenges. First, the Stern layer complicates the com-

putational domain by introducing an additional length scale which is significantly

smaller than that of the diffuse layer. Therefore, the computational domain be-

comes extremely complicated and the number of meshes prohibitively large for

simulating three-dimensional electrode structures. Second, the governing equa-

tions for the electric potential and ion concentrations in the Stern and diffuse

layers are numerically solved separately and coupled through the boundary con-

ditions [Equations (5.3b)]. These equations must be solved simultaneously thus

requiring excessive computational time and resources. Therefore, the MPB model

with a Stern layer [Equations (5.1)] and the conventional boundary conditions

[Equations (5.3)] [94, 148, 149, 228] cannot be used to simulate three-dimensional

structures such as those encountered in practical EDLCs.
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Alternatively, the Stern layer forming near planar electrodes can also be ac-

counted for via a modified boundary condition without simulating it explicitly

in the electrolyte domain. In one-dimensional Cartesian coordinates, the corre-

sponding boundary condition at the Stern/diffuse layer interface located at x = H

has been derived as [4, 95, 128,130,245–252],

ϵ0ϵr
dψ

dx
(x = H) = CSt

s [ψs − ψ(x = H)] (5.4)

where CSt
s = ϵ0ϵr/H is the Stern layer capacitance for planar electrodes [4,95,128,

130,245–252]. Then, Equations (5.3c) and (5.4) form a complete set of boundary

conditions for the entire electric double layer while simulating only the diffuse

layer from x = H to x = L. To the best of our knowledge, no similar approach

has been proposed for simulating electric double layers near electrodes in other

geometries or coordinate systems.

5.3 Analysis

5.3.1 Schematics and Assumptions

Figure 5.4.1 shows the schematic representation of the ordered bimodal meso-

porous carbon simulated in this study [7]. Here, the dimensions of the simulated

electrode structure were identical to those of the bimodal mesoporous carbon

“CP204-S15” reported in Ref. [6] as previously discussed. Note that the capac-

itances predicted by the MPB model with the Stern layer [Equations (5.1)] are

identical for the positive and negative electrodes in binary and symmetric elec-

trolytes [4, 95, 199, 228] such as those considered here. Therefore, it suffices to

simulate only one electrode [4, 95, 199, 228]. In addition, the present study simu-

lated one unit cell of the 3D porous electrode structure. Further increasing the

number of unit cells was found to have no effect on the predicted areal and gravi-

metric capacitances under equilibrium conditions [199]. By virtue of symmetry, it

suffices to simulate only 1/12th of one unit cell. Figure 5.4.1 shows the schematic
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of the computational domain simulated in this study. The density of carbon ma-

terials is about ρ = 1.8 g cm−3 in its amorphous phase [253]. Then, the number of

mesopores existing in the walls was adjusted so that the specific area of the simu-

lated electrode matched that of the actual bimodal electrodes ranging from 492 to

1504 m2 g−1 [6]. Overall, the specific area of the simulated structure [Figure 5.4.1]

was adjusted to be 960 m2 g−1 which falls within 5% of its experimental value of

1003 m2 g−1 [6]. The thickness of the electrolyte region at the edge of the electrode

was specified to be L = 30 nm. Increasing this thickness to L = 60 nm was found

to have no effect on the predicted areal and gravimetric capacitances due to the

rapid decrease of the electric potential from the electrode surface caused by the

thin electric double layer [199,228,244].

(a) (b)

Figure 5.1: Schematic and coordinate systems of (a) ordered bimodal carbon

electrodes as synthesized in Ref. [6] and (b) the computational domain along with

the boundary conditions and coordinate system for the ordered bimodal carbon

CP204-S15 simulated in the present study [7].

To make the problem mathematically tractable, the following assumptions

were made: (1) the electric potential and ion concentrations reached their equi-

librium states, (2) anions and cations had the same effective diameter assumed

to be constant and independent of electrolyte concentration [4, 95, 200], (3) the
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electrolyte relative permittivity was constant and uniform within the Stern layer.

Note that the electrolyte relative permittivity is typically defined for media with

characteristic length larger than 1 or 2 nm [254, 255], (4) isothermal conditions

prevailed throughout the electrode and electrolyte, (5) advection of the electrolyte

was assumed to be negligible, (6) the ions could only accumulate at the electrode

surface and could not diffuse into the electrode, i.e., there was no ion insertion,

and (7) the specific ion adsorption due to non-electrostatic forces were assumed

to be negligible.

5.3.2 Constitutive Relations

In order to solve Equations (5.1) and (5.3), the electrolyte properties ϵr, z0, c∞,

and a along with the temperature T and the surface potential ψs are needed. In

the diffuse layer, the Booth model was used to account for the dependency of

electrolyte dielectric permittivity on the local electric field [189–191,199,228],

ϵr(E) = n2 +
(
ϵr(0)− n2

) 3

βE

[
coth(βE)− 1

βE

]
for E ≥ 107 V/m(5.5a)

ϵr = ϵr(0) for E < 107 V/m (5.5b)

where E = |−∇ψ| is the norm of the local electrical field vector, ϵr(0) is the

relative permittivity at zero electric field, and n is the index of refraction of the

electrolyte at zero electric field frequency. In the Stern layer, the electrolyte

dielectric permittivity was imposed as constant and uniform [assumption (3)]. Its

value was evaluated using Equation (5.5) and the computed local electric field at

the Stern/diffuse layer interface.

The electrolyte solution used in Ref. [6] was TEABF4 in propylene carbonate

solution at room temperature (T = 298 K) characterized by the following proper-

ties: ϵr(0) = 64.4 [219], n = 1.42 [220], β = 1.314× 10−8 m V−1 [199], and z0 = 1.

The ion diameter of non-solvated TEA+ and BF−
4 ions are a = 0.68 and 0.34

nm [37], respectively. Their solvated ion diameters were reported to be a = 1.36
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and 1.40 nm [256,257], respectively. The electrolyte concentration and the surface

electric potential were chosen to be the same as those used in Ref. [6], namely,

c∞ = 1.0 mol L−1 and ψs = 2 V. In addition, the Stern layer thickness H was

approximated as the radius of solvated ions, i.e., H = a/2 [9, 35,36].

5.3.3 Derivation of Generalized Boundary Conditions

This section presents the derivation of a generalized boundary condition valid for

cylindrical and spherical electrode particles or pores. Figure 5.2 shows a schematic

of the electric double layer structure forming near a positively charged cylindri-

cal/spherical electrode particle or pore.

(a) (b)
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ψψψψs

H

cation
a

anion

solvent molecule

DIFFUSION

ELECTROSTATIC FORCE

r

+
+
+
+
+
+
+
+

+
+

R0

E
le

ct
ro

de
 m

at
ri

x

Figure 5.2: Schematic of the electric double layer structure illustrating the ar-

rangement of solvated anions and cations as well as the Stern layer and the diffuse

layer forming near (a) a cylindrical or spherical electrode particle [7–9] and (b) a

cylindrical or spherical pore with radius R0 and Stern layer thickness H [7–9].

For a cylindrical electrode of radius R0 (Figure 5.2a), Equation (5.1a) in the
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Stern layer is expressed as [94,148,149]

d

dr

(
ϵ0ϵrr

dψ

dr

)
= 0 for R0 ≤ r < R0 +H (5.6)

where ϵr = ϵr(EH) is the uniform electrolyte relative permittivity within the Stern

layer [assumption (3)]. Its value is evaluated at the Stern/diffuse layer interface

located at rH = R0 + H using Booth model [Equation (5.5)] based on the local

electric field EH(rH). Then, integrating Equation (5.6) twice with respect to r

from r = R0 to r = R0 + H using the boundary condition given by Equations

(5.3a) and (5.3b) yields,

ψ(r) = − [ψs − ψ(r = R0 +H)]
log(r/R0)

log(1 +H/R0)
+ ψs (5.7)

Differentiation of Equation (5.7) with respect to r yields the following boundary

condition at the Stern/diffuse layer interface at r = R0 +H,

−ϵ0ϵr(EH)
dψ

dr
(r = R0 +H)

=
ϵ0ϵr(EH)

R0 log(1 +H/R0)

R0

R0 +H
[ψs − ψ(r = R0 +H)] (5.8)

Equation (5.8) relates the local electric potential to its gradient at r = R0 + H.

It serves as a new boundary condition at the Stern/diffuse layer interface.

Similarly, for spherical electrodes, the boundary condition at the Stern/diffuse

layer interface can be derived as,

−ϵ0ϵr(EH)
dψ

dr
(r = R0 +H)

=
ϵ0ϵr(EH)

H

(
1 +

H

R0

)(
R0

R0 +H

)2

[ψs − ψ(r = R0 +H)] (5.9)

Note that Equations (5.4), (5.8), and (5.9) can be rewritten in a generalized form

for planar, cylindrical, and spherical electrodes as,

−ϵ0ϵr(EH)∇ψ ·
(
rH
rH

)
= CH

s

(
R0

R0 +H

)p

[ψs − ψ(rH)] (5.10)

where rH is the local position vector at the Stern/diffuse layer interface located at

rH = R0+H for cylindrical and spherical electrodes. Note that rH/rH represents
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the local outward normal unit vector at the Stern/diffuse layer interface. Here,

CH
s is the Stern layer capacitance predicted by the Helmholtz model assuming

constant ϵr within the Stern layer and given by [84,228],

CH
s =



ϵ0ϵr(EH)

H
for planar electrode (5.11a)

ϵ0ϵr(EH)

R0 log(1 +H/R0)
for cylindrical electrode of radius R0(5.11b)

ϵ0ϵr(EH)

H

(
1 +

H

R0

)
for spherical electrode of radius R0 (5.11c)

The value of p in Equation (5.10) is given by,

p =


0 for planar electrodes (5.12a)

1 for cylindrical electrodes (5.12b)

2 for spherical electrodes (5.12c)

Moreover, for cylindrical and spherical pores of radius R0 illustrated in Figure

5.2b, the new boundary condition at the Stern/diffuse layer interface located at

rH = R0 −H can be similarly derived as,

−ϵ0ϵr(EH)∇ψ ·
(
rH
rH

)
= CH

s

(
R0

R0 −H

)p

[ψs − ψ(rH)] (5.13)

where p = 1 or 2 for cylindrical or spherical pores, respectively. Here also,

the Stern layer capacitance CH
s for cylindrical or spherical pores is given by the

Helmholtz model assuming constant ϵr within the Stern layer and expressed as [84],

CH
s =



ϵ0ϵr(EH)

R0 log

(
R0

R0 −H

) for cylindrical pores of radius R0 (5.14a)

ϵ0ϵr(EH)

H

(
R0 −H

R0

)
for spherical pores of radius R0 (5.14b)

5.3.4 Method of Solution and Data Processing

Equation (5.1b) was solved using the commercial finite element solver COMSOL

4.2, along with the boundary conditions given by Equations (5.3c) and (5.10)
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or (5.13) and field-dependent permittivity ϵr(E) given by Equation (5.5). The

simulations were run on a Dell workstation Precision 690 with two 2.66 GHz

Quad-Core Intel Xeon CPUs and 64 GB of RAMs.

Due to charge conservation [Equation (5.1a)], the total amount of charges Q

stored near the electrode surfaces As is equal to that present at the Stern/diffuse

layer interface denoted by Ad. Then, it can be computed by integrating the surface

charge density (ϵ0ϵrE · n) along As or Ad and expressed as [35,201],

Q =

∫
As

ϵ0ϵr(E)E · n dA =

∫
Ad

ϵ0ϵr(E)E · n dA (5.15)

where E = −∇ψ is the local electric field vector, n is the local outward normal

unit vector at the electrode surface As or at the electrode/electrolyte interface Ad.

Then, the overall gravimetric capacitance was estimated as [244],

Cg =
Q

ρV ψs

(5.16)

where ρ and V are the density and volume of the amorphous carbon electrode, re-

spectively. The diffuse layer areal capacitance CD
s and the total areal capacitance

Cs were respectively estimated as [199,244],

CD
s =

Q

ψdAd

=
1

ψdAd

∫
Ad

ϵ0ϵr(E)E · n dA and Cs =
Q

ψsAs

(5.17)

Note that the total areal capacitance Cs can be also equivalently calculated using

the one-dimensional series formula 1/Cs = 1/CSt
s + 1/CD

s when the Stern layer

thickness is much smaller than the electrode or pore diameter as considered here.

In addition, the Stern layer areal capacitance CSt
s was given by the Helmholtz

model [Equations (5.11) or (5.14)].

The numerical convergence criterion was defined such that the maximum rel-

ative differences in the predicted capacitances CSt
s , C

D
s , Cs, and Cg was less than

1.5% when decreasing the mesh size by a factor two. The mesh size was the small-

est at the Stern/diffuse layer interface due to the large electric potential gradient
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and then gradually increased. The maximum mesh size was specified to be about

0.1 nm at all Stern/diffuse layer interfaces and remained less than 2.5 nm any-

where else in the computational domain. The total number of finite elements was

on the order of 107 for the simulations of bimodal ordered carbon CP204-S15 with

1/12th of one unit cell shown in Figure 5.4.1.

Finally, the numerical tool was validated based on two equilibrium cases re-

ported in the literature. First, the equilibrium electric potential profile in the

diffuse layer predicted by solving the MPB model was validated against the ex-

act solution for planar electrodes [8, 35, 90] with ϵr = 78.5, c∞ = 0.01 and 0.001

mol L−1, νp = 0, and ψD = 0.1 V. Second, the computed capacitances for the

Stern and diffuse layers obtained from the MPB model were validated against

their theoretical formula assuming constant electrolyte permittivity [4,95,228] for

ψs = 2 V, c∞ = 1 mol L−1, and a = 0.68 or 1.40 nm. Good agreement was

obtained between our results and reported electric potential profiles [8, 35, 90] or

capacitances [4, 95,228] for all cases considered.

5.4 Results and Discussions

5.4.1 Validity of the New Boundary Conditions

The new boundary conditions [Equations (5.10) and (5.13)] were used to compute

the capacitances for a single cylindrical electrode particle and a cylindrical pore by

solving Equations (5.1b), (5.3c), and (5.10) or (5.13), respectively. The parameters

were chosen such that a = 0.68 nm, c∞ = 1.0 mol L−1, and ψs = 2 V with field-

dependent electrolyte permittivity ϵr(E) given by Equation (5.5). The results

were compared with those obtained by simulating both the Stern and diffuse

layers in the electrolyte domain using the conventional boundary conditions given

by Equations (5.3). Figure 5.3 shows the Stern layer, diffuse layer, and total areal

capacitances predicted using these two approaches as a function of particle or
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pore radius R0 ranging from 2.5 to 60 nm. The relative difference in the values of

CSt
s , CD

s , and Cs predicted using these two approaches was less than 0.2% for all

cases considered here. In addition, it is evident that the predicted CSt
s was much

smaller than CD
s for all cases considered. Therefore, the double layer capacitance

Cs was dominated by CSt
s which is consistent with the conclusion drawn in our

previous study [228] when accounting for field-dependent electrolyte permittivity.

Note that for particle or pore radius larger than 40 nm, the predicted capacitance

reached a plateau of Cs = 10.2 µF cm−2 corresponding to that of planar electrodes

as discussed in Refs. [86,87,199,228,244].
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Figure 5.3: Predicted Stern layer CSt
s , diffuse layer CD

s , and total Cs areal capac-

itances [7] for (a) a cylindrical electrode particle and (b) a cylindrical pore as a

function of radius R0 ranging from 2.5 to 60 nm. Results were obtained using

conventional and our new boundary conditions (BC) with a = 0.68 nm, c∞ = 1

mol L−1, ψs = 2 V, and electrolyte permittivity given by Equation (5.5).

Similarly, the predicted capacitances CSt
s , CD

s , and Cs using these two ap-

proaches were compared for a spherical electrode and a spherical pore with var-

ious radii ranging from 2.5 to 60 nm. Excellent agreement was observed in all

cases. Overall, these results demonstrate that the Stern layer can be accurately
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accounted for by using the new boundary conditions given by Equations (5.10) or

(5.13) for cylindrical and spherical electrodes or pores without explicitly simulat-

ing the Stern layer in the electrolyte domain. Note that the total number of finite

elements decreased by about 30% to 60% when using the new boundary condi-

tions for simulating a single cylindrical and spherical electrode or pore with radius

ranging from 2.5 to 60 nm. The corresponding computational time was reduced

by about 10% − 30%. This reduction in finite elements and computational time

became more significant with increasing radius and geometric complexity. This

clearly demonstrates the advantage of the new boundary conditions.

5.4.2 Capacitances of Ordered Bimodal Carbons

The double layer capacitances CSt
s , CD

s , and Cs of the ordered bimodal carbon

shown in Figure 5.4.1 were predicted by solving Equation (5.1b) in the diffuse

layer along with the new boundary conditions given by Equations (5.3c) and

(5.10) or (5.13). The electrode surface was divided in three sections (i) the inner

surface of the pores of radius 95 nm, (ii) the outer surface of radius 97 nm,

and (iii) the mesopore with 7 nm in radius located in the walls separating the

macropores. The boundary condition given by Equation (5.10) was imposed at

the outer surfaces while Equation (5.13) was imposed at the mesopore and inner

pore surfaces, respectively. Note that without these new boundary conditions,

it was impossible to solve the coupled governing equations for such a complex

domain due to (i) the difficulty in creating the geometry and (ii) an excessively

large number of finite elements.

Table 5.1 summarizes the predicted Stern layer, diffuse layer, and total areal

capacitances as well as the gravimetric capacitance at the inner, outer, and meso-

pore surfaces of the ordered bimodal carbon. Results were obtained based on

the non-solvated effective ion diameter a = 0.68 nm [37] with field-dependent

electrolyte permittivity ϵr(E) given by Equation (5.5). The areal capacitances
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predicted for planar electrodes for the same parameters were also reported in

Table 5.1 for comparison purposes.

Table 5.1: Predicted Stern layer, diffuse layer, and total areal capacitances as

well as gravimetric capacitance Cg for the ordered bimodal carbon (Figure 5.1b)

computed at the inner, outer, and mesopore surfaces. Results were obtained by

solving Equations (5.1b), (5.3c), and (5.10) or (5.13) using non-solvated or solvated

ion diameter a = 0.68 or a = 1.40 nm, respectively along with c∞ = 1 mol L−1,

ψs = 2 V, and electrolyte permittivity given by Equation (5.5). Predictions for

planar electrodes are also reported for comparison.

Ion

diameter

Capacitance Planar

electrode

Inner surface Outer surface Mesopores

CSt
s (µF cm−2) 13.4 13.3 13.4 12.8

a = 0.68 nm CD
s (µF cm−2) 43.2 44.6 43.8 47.3

Cs (µF cm−2) 10.2 10.2 10.2 10.1

Cg (F g−1) – 39.0 35.0 23.0

CSt
s (µF cm−2) 13.0 11.8 11.9 10.0

a = 1.40 nm CD
s (µF cm−2) 17.7 21.4 20.7 28.5

Cs (µF cm−2) 7.5 7.5 7.5 7.4

Cg (F g−1) – 29.2 25.1 17.8

It is evident that the Stern layer areal capacitance CSt
s was about one-third

smaller than the diffuse layer areal capacitance CD
s at all surfaces. Thus, the

total areal capacitance Cs was controlled by the Stern layer. In addition, the total

areal capacitances Cs at the inner and outer surfaces were 10.2 µF cm−2 which was

identical to that for planar electrodes. Indeed, electrodes with radius of curvature

larger than 40 nm behave like planar electrodes as established in Refs. [199, 228]

and also shown in Figure 5.3. Similarly, the areal capacitance Cs at mesopore

surfaces was 10.1 µF cm−2 which fell within 1% of that of planar electrodes.

In fact, it was found that the areal capacitance Cs of mesopores decreased with
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increasing pore depth (or carbon wall thickness) (not shown). This was due to the

confinement of the electric field in small pores leading to reduced surface charge

density and capacitance as previously discussed [199, 244]. However, this effect

appeared to be negligible for small pore depth (i.e., carbon wall thickness) of 2 nm

such as those considered here. In addition, the mesopores contributed about 30%

less to the gravimetric capacitance Cg than the inner and outer pore surfaces.

This was due to the small carbon wall thickness and thus the relatively small

mesopore surface area compared with those of inner and outer pore surfaces.

Table 5.1 also summarizes the predicted capacitances for the electrode struc-

ture shown in Figure 5.4.1 but using solvated ion diameter a = 1.40 nm [257]. It

demonstrates that, for larger effective ion diameter, the Stern layer areal capaci-

tance CSt
s had the same order of magnitude as the diffuse layer areal capacitance

CD
s at all surfaces. Consequently, the capacitances CSt

s and CD
s contributed nearly

equally to the total areal capacitance Cs. Here also, the inner and outer pore sur-

faces contributed slightly more to the gravimetric capacitance than mesopores.

However, both the local areal and gravimetric capacitances decreased by about

30% when using the solvated ion diameter a = 1.40 nm instead of a = 0.68

nm. This was due to the associated reduction in the maximum ion concentration

cmax = 1/NAa
3 at the electrode surface as ion diameter a increases.

5.4.3 Comparison With Experimental Data

Table 5.2 shows the predicted overall areal and gravimetric capacitances Cs and

Cg defined by Equations (5.16) and (5.17) and accounting for the contribution of

all electrode surfaces. The experimental values reported in Ref. [6] are also repro-

duced for comparison. It is worth noting that the values of Cs and Cg predicted

using non-solvated ion diameter a = 0.68 nm were about 8.5% and 3% larger than

their respective experimental counterparts. On the other hand, Cs and Cg pre-

dicted using solvated ion diameter a = 1.40 nm underestimated the experimental
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values by about 24%. In fact, the predictions using non-solvated and solvated

ion diameters set the upper and lower bounds for the capacitances, respectively.

The capacitances predicted using non-solvated ion diameter (a = 0.68 nm [37])

showed better agreement with experimental data. We speculate that these results

could be attributed to two possible reasons. First, as the electrolyte concentra-

tion increases, the dissolved electrolyte ions become less solvated, i.e., they are

surrounded by less solvent molecules [5, 224–226]. Consequently, the effective ion

diameter decreases with increasing electrolyte concentration [5,224,226]. Note also

that the solubility of TEABF4 in propylene carbonate is about 1 mol L−1 at room

temperature [227]. Second, the effective ion diameter of TEA+ tends to decrease

under large local electric field [258]. In fact, TEA+ ions was found to become

distorted and able to adsorb in pores with diameter even smaller than the non-

solvated TEA+ [213,258,259]. Thus, the effective ion diameter near the electrode

surfaces approaches that of the non-solvated ions, i.e., a = 0.68 nm [213,258,259].

Overall, the predicted capacitances agreed well with experimental data. These

results validate the numerical models, boundary conditions, and constitutive re-

lationships developed here for simulating EDLCs with three-dimensional ordered

structures. The new boundary conditions were essential in obtaining such results.

Table 5.2: Predicted [7] overall areal and gravimetric capacitances of the ordered

bimodal carbon using (a) non-solvated ion diameter a = 0.68 nm and (b) solvated

ion diameter a = 1.40 nm in comparison with experimental data reported in

Ref. [6]. Results were obtained by solving Equations (5.3c), (5.1b), and (5.10) or

(5.13) with c∞ = 1 mol L−1 and ψs = 2 V.

Specific area (m2 g−1) Cs (µF cm−2) Cg (F g−1)

Measured [6] 1003 9.4 95

a = 0.68 nm 960 10.2 97.9

a = 1.40 nm 960 7.5 72.0
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Thanks to this experimentally validated numerical model, it becomes possi-

ble to numerically explore the effects of the electrode architecture on its energy

storage capabilities. Figure 5.4 shows the predicted gravimetric capacitance Cg of

bimodal carbon structures as a function of their specific surface area ranging from

910 to 1030 m2 g−1. Here, the specific surface area was varied by changing the

inner pore radius R0 from 50 to 150 nm while other geometric parameters such

as the carbon wall thickness and mesopore radius remained identical to those of

CP204-S15 carbon shown in Figure 5.4.1. The results were obtained by solving

Equation (5.1b) subject to boundary conditions given by Equations (5.3c) and

(5.10) or (5.13) using both solvated and non-solvated ion diameters, i.e., a = 1.40

nm and a = 0.68 nm, respectively. Other parameters were identical to those used

to generate the results presented in Table 5.1. Figure 5.4 also shows the mea-

sured gravimetric capacitance of different bimodal carbon films [6] obtained using

1 mol L−1 TEABF4 electrolyte. It is evident that predicted and experimentally

measured gravimetric capacitance Cg increased linearly with increasing specific

surface area. The slope of Cg vs. specific surface area corresponds to a constant

areal capacitance of Cs ≈ 7.4 or 10.2 µF cm−2 when using solvated or non-solvated

ion diameter, respectively. Note that this trend is consistent with experimental

data reporting a linear relationship between gravimetric capacitance and specific

surface area with an areal capacitance of 9.4 µF cm−2 [6]. Overall, very good

agreement was observed between experimental measurements and model predic-

tions.

Finally, it is evident that the new boundary conditions [Equations (5.10)

and (5.13)] developed here made possible the simulations of EDLCs with three-

dimensional ordered electrode structures. These simulations can give detailed

information such as the equilibrium local charge storage, electric potential, and

ion concentrations within the electrolyte which cannot be measured experimen-

tally. Note also that these boundary conditions [Equations (5.10) and (5.13)] can
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Figure 5.4: Predicted [7] and experimentally measured [6] gravimetric capacitance

Cg for bimodal carbons as a function of their specific surface area. Numerical

results were obtained by solving Equation (5.1b) using boundary conditions given

by Equations (5.3c) and (5.10) or (5.13) with non-solvated ion diameter a = 0.68

nm, c∞ = 1 mol L−1, ψs = 2 V, and the electrolyte permittivity given by Equation

(5.5). The inner pore radius R0 was varied from 50 to 150 nm.

be readily employed to simulate the dynamic charging and discharging of EDLCs

with ordered electrode structures. Then, the model could be used to identify

the optimum electrode architecture and provide design rules to achieve maximum

charging performance by EDLCs.

5.5 Conclusions

This chapter developed a three-dimensional equilibrium model based on contin-

uum theory for simulating EDLCs with highly ordered electrode structures. For

the first time, a new set of boundary conditions was derived to account for the
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Stern layer forming near planar, cylindrical, and spherical electrodes as well as

cylindrical and spherical pores [7]. They made possible the simulations of EDLCs

with 3D ordered electrode structures while simultaneously and accurately account-

ing for [7] (i) both Stern and diffuse layers, (ii) finite ion size, and (iii) the de-

pendency of electrolyte permittivity on the local electric field. The model was

used to faithfully simulate an actual EDLC consisting of complex 3D ordered bi-

modal carbons in 1 mol L−1 TEABF4/propylene carbonate electrolyte solution [6].

The predicted gravimetric capacitance of different bimodal carbon electrodes was

found to increase linearly with increasing specific surface area corresponding to

constant areal capacitance. Numerical predictions were in very good agreement

with experimental data [6].
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CHAPTER 6

Scaling Laws of Carbon-Based EDLCs

Chapters 3 to 5 presented physical modeling of EDLCs starting from a single

microsphere to 3D ordered electrode structures. This chapter further extends the

theory developed in previous chapters and presents a scaling law for the integral

capacitance of carbon-based EDLCs.

6.1 Introduction

Electrodes of electric double layer capacitors (EDLCs) are typically made of

porous carbon-based materials [27, 31, 34]. The porous structure increases the

electrode surface area per unit volume available for EDL formation thus increas-

ing energy density. However, the relationship between energy density and surface

area is neither linear nor straightforward. The capacitance of EDLCs depends on

a variety of parameters such as the electrode surface area, pore size, electrolyte

properties, and the potential window [27,31,34]. General correlations relating the

capacitance of EDLCs to the physical or electrochemical properties of the elec-

trodes and electrolytes and accounting for the detailed structure of the electric

double layer are not available. Instead, progress has been made mainly by trial

and error informed by physical intuition and simplified EDLC models [85–87,94].

This chapter aims to develop an experimentally-validated correlation relating

the integral capacitance of EDLCs to these parameters. Such correlations would

rationalize the design of EDLCs and provide rules for optimizing the porous ar-

chitecture of EDLCs and for selecting the electrolyte.
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6.2 Background

6.2.1 Equilibrium MPB Model - Planar Electrodes

The modified Poisson-Boltzmann (MPB) model for binary and symmetric elec-

trolytes predicts the equilibrium electric potential ψ in the diffuse layer and ac-

counts for the finite ion size [4, 95–99]. In one-dimensional Cartesian coordinates

corresponding to a planar electrode, it is expressed as [4, 95–99],

∂

∂x

(
ϵ0ϵr

∂ψ

∂x

)
=

2zeNAc∞ sinh

(
zeψ

kBT

)
1 + 4NAa3c∞ sinh2

(
zeψ

2kBT

) . (6.1)

where ϵ0 and ϵr are the free space permittivity (ϵ0 = 8.854 × 10−12 F/m) and

the relative permittivity of the electrolyte solution, respectively. The Boltzmann

constant is denoted by kB = 1.38×10−23 J/K while T is the absolute temperature,

z is the ion valency, e = 1.602 × 10−19 C is the elementary charge, and NA =

6.022× 1023 mol−1 is the Avogadro constant. The effect of the Stern layer can be

accounted for via a boundary condition at the Stern/diffuse layer interface located

at x = H expressed as [245,246],

−∂ψ
∂x

(x = H) =
ψs − ψD

H
(6.2)

where ψs is the surface potential and H is the Stern layer thickness corresponding

to half of the effective ion diameter a, i.e., H = a/2, as illustrated in Figure

5.2. The potential at the Stern layer/diffuse layer interface located at x = H is

denoted by ψD = ψ(H). The electric potential far away from the electrode was

imposed as zero, i.e., ψ(x = L) = 0. Note that this boundary condition is valid

for symmetric electrolytes but cannot be used for asymmetric electrolytes [260].

Solving Equations (6.1) and (6.2) yields expression for the equilibrium Stern

and diffuse layer capacitances for planar electrodes in binary and symmetric elec-

trolytes, denoted by CSt
s and CD

s , respectively. Assuming constant electrolyte
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properties and accounting for the finite ion size, they are expressed as [4,7,95,228]

CSt
s =

ϵ0ϵr
H

and CD
s =

2zeNAc∞λD
ψD

√
2

νp
ln

[
1 + 2νp sinh

2

(
zeψD

2kBT

)]
(6.3)

where λD is the Debye length for symmetric electrolytes defined as

λD =
√
ϵ0ϵrkBT/2e2z2NAc∞ and corresponding to an estimate of the EDL thick-

ness [9, 35]. The packing parameter νp is defined as νp = 2a3NAc∞. It represents

the ratio of the total bulk ion concentration to the maximum ion concentration as-

suming a simple cubic ion packing [4,7,95,228]. By treating the Stern and diffuse

layer capacitances in series, the total double layer integral capacitance Cs,planar

can be expressed as [7, 9, 90,149,228]

1

Cs,planar

=
1

CSt
s

+
1

CD
s

=
a

2ϵ0ϵr
+

ψD

2zeNAc∞λD

{
2

νp
ln

[
1 + 2νp sinh

2

(
zeψD

2kBT

)]}−1/2

(6.4)

6.2.2 Equilibrium MPB Model - Cylindrical and Spherical Pores

The MPB model with Stern layer for cylindrical or spherical pores (Figure 5.2b)

is expressed as [7, 228],

1

rp
∂

∂r

(
ϵ0ϵrr

p∂ψ

∂r

)
= zeNAc∞

2 sinh

(
zeψ

kBT

)
1 + 4NAa3c∞ sinh2

(
zeψ

2kBT

) (6.5)

where p = 1 or 2 for cylindrical or spherical pores, respectively. Here also, the

effect of the Stern layer can be accounted for via the boundary condition at the

Stern/diffuse layer interface, located at r = R0−H (Figure 5.2b), expressed as [7],

∂ψ

∂r
(r = R0 −H) =


ψs − ψD

(R0 −H) ln

(
R0

R0 −H

) for cylindrical pores. (6.6a)

ψs − ψD

H

R0

R0 −H
for spherical pores. (6.6b)

where ψD is the potential at the Stern layer/diffuse layer interface, i.e., ψD =

ψ(r = R0 −H). Moreover, the gradient of electric potential at the center of the
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spherical or cylindrical pore (at r = 0) was imposed as zero by virtue of symmetry,

i.e.,

∂ψ

∂r
(r = 0) = 0 (6.7)

To the best of our knowledge, unlike for planar electrodes, no analytical expres-

sions exist for the total and diffuse layer capacitances of cylindrical or spherical

pores when accounting for the finite ion size.

This chapter aims to identify scaling laws governing the integral areal capaci-

tance of actual EDLCs with porous carbon-based electrodes as a function of the

dimensionless similarity parameters rigorously identified from scaling analysis of

the governing equations for the electric potential and ion concentrations.

6.3 Analysis

6.3.1 Equilibrium MPB Model - Planar Electrodes

The dimensional analysis of the MPB model can be performed by scaling (i) the

spatial coordinate by the Debye length λD and (ii) the local potential ψ by the

thermal voltage kBT/ez representing the voltage that would induce a potential

energy equivalent to the thermal energy of an ion of charge z so that [261],

x∗ =
x

λD
and ψ∗ =

ψ

kBT/ez
. (6.8)

Then, Equation (6.1) can be written in dimensionless form as

∂2ψ∗

∂x∗2
=

2 sinhψ∗

1 + 2νp sinh
2(ψ∗/2)

. (6.9)

Moreover, the dimensionless boundary conditions can be written as

−∂ψ
∗

∂x∗
(x∗ = a∗/2) =

ψ∗
s − ψ∗

D

a∗/2
and ψ∗(x∗ = L∗) = 0. (6.10)

where ψ∗
D = ψD/(kBT/ez) = ψ∗(a∗/2) is the dimensionless diffuse layer potential.

Four dimensionless similarity parameters arise from the scaling analysis of the
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equilibrium MPB model with Stern layer for planar electrodes [Equations (6.9)

and (6.10)] namely (i) the dimensionless surface potential ψ∗
s = ψs/(kBT/ze),

(ii) the packing parameter νp = 2NAa
3c∞, (iii) the dimensionless ion diame-

ter a∗ = a/λD = 2H/λD, and (iv) the dimensionless electrolyte layer thickness

L∗ = L/λD. Note that these four dimensionless numbers, or combination thereof,

were also derived from the scaling analysis of the modified Poisson-Nernst-Planck

(MPNP) model (Chapter 8). In the scaling analysis of the MPNP model, an ad-

ditional dimensionless number was obtained corresponding to the dimensionless

scan rate. The two approaches are equivalent if one considers low scan rates and

imposes ψs = (ψmax − ψmin)/2 where ∆ψ is the potential window used in cyclic

voltammetry simulations [149].

Similarly, scaling the total integral capacitance of a planar electrode Cs,planar

[Equation 8.15b)] by the Stern layer capacitance CSt
s = ϵ0ϵr/H with H = a/2,

results in the dimensionless total integral capacitance C∗
s,planar expressed as,

1

C∗
s,planar

=
CSt

s

Cs,planar

= 1 +
2ψ∗

D

a∗

{
2

νp
ln

[
1 + 2νp sinh

2

(
ψ∗
D

2

)]}−1/2

(6.11)

To the best of our knowledge, analytical expressions for the diffuse layer potential

ψD or ψ∗
D do not exist when accounting for the finite ion size, i.e., when νp ̸=

0. Alternatively, they can be determined numerically by solving the equilibrium

modified Poisson-Boltzmann (MPB) model with the Stern layer [Equations (6.1)

and (6.2)]. If the above scaling analysis is correct, ψ∗
D should depend only on the

four dimensionless numbers identified namely νp, a
∗, L∗, and ψ∗

s .

6.3.2 Equilibrium MPB Model - Cylindrical and Spherical Pores

By employing the scaling parameters r∗ = r/λD and ψ∗ = ψ/(kBT/ez), the MPB

model with Stern layer [Equation (6.5) to (6.7)] for cylindrical and spherical pores
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can be written in dimensionless form as

1

r∗p
∂

∂r∗

(
r∗p

∂ψ∗

∂r∗

)
=

2 sinhψ∗

1 + 2νp sinh
2(ψ∗/2)

. (6.12)

The dimensionless boundary conditions at the Stern/diffuse layer interface can be

written as,

−∂ψ
∗

∂r∗
(r∗ = R∗

0 − a∗/2)

=


ψ∗
s − ψ∗

D

(R∗
0 − a∗/2) ln

(
R∗

0

R∗
0 − a∗/2

) for cylindrical pores (6.13a)

ψ∗
s − ψ∗

D

a∗/2

R∗
0

R∗
0 − a∗/2

for spherical pores (6.13b)

where ψ∗
D = ψ∗(R∗

0 − a∗/2). The symmetry boundary condition at the center of

the pore is given by,
∂ψ∗

∂r∗
(r∗ = 0) = 0. (6.14)

Here also, four dimensionless numbers appeared in the dimensionless MPB model

with Stern layer [Equations (6.12) to (6.14)] for cylindrical and spherical pores,

namely (i) ψ∗
s , (ii) νp, (iii) a

∗, and (iv) the dimensionless pore radius defined as

R∗
0 = R0/λD. The only difference from the dimensionless numbers governing the

integral capacitance of planar electrodes is the substitution of L∗ by R∗
0.

6.4 Results and Discussions

6.4.1 Equilibrium Diffuse Layer Potential

6.4.1.1 Planar Electrodes

Figure 6.1 shows the dimensionless diffuse layer potential ψ∗
D as a function of

the dimensionless surface potential window ψ∗
s ranging from 0.01 to 20 with L∗

varying between 16 and 329, while νp ranged from 0.052 to 0.94, and a∗ from

1.15 to 3.03. It was computed by numerically solving the equilibrium MPB model
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with the Stern layer [Equations (6.9) and (6.10)]. It is evident that all curves

nearly collapsed on a single line irrespective of the values of νp, a
∗, and L∗ so

that ψ∗
D depended solely on ψ∗

s . The inter-electrolyte distance 2L did not affect

ψD provided that the electric double layer on each electrode did not overlap the

other, i.e., for L≫ λD or L∗ ≫ 1. Then, the dimensionless diffuse layer potential

ψ∗
D as a function of ψ∗

s was fitted with a power law to yield

ψ∗
D = 0.37ψ∗1.16

s . (6.15)

The associated coefficient of determination was R2 = 0.98. Predictions of CD
s

using Equation (8.15b) and the above expression for ψ∗
D fell within 1% of its value

obtained using the numerically computed value of ψ∗
D.
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Figure 6.1: Dimensionless diffuse layer potential ψ∗
D as a function of dimensionless

surface potential ψ∗
s ranging from 0.01 to 20 for different values of L∗, νp, and a

∗.
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6.4.1.2 Cylindrical and Spherical Pores

Figure 6.2 shows the predicted dimensionless diffuse layer potential ψ∗
D as a func-

tion of dimensionless surface potential window ψ∗
s ranging from 0.01 to 20 for

(a) cylindrical and (b) spherical pores with dimensionless pore radius R∗
0 = 6.58,

16.44, 65.76, and 328.8. These values correspond to surface potential ψs ranging

from 0.001 to 0.5 V and R0 equals to 2, 5, 20, and 100 nm, respectively. Here,

νp ranged from 0.15 to 0.94 and a∗ from 1.64 to 3.29. The dimensionless diffuse

layer potential ψ∗
D for planar electrodes given by Equation (6.15) was also shown

in Figure 6.2 for comparison. It is evident that ψ∗
D for cylindrical or spherical

pores was nearly identical to that of planar electrodes for R∗
0 ≥ 16. For R∗

0 < 16,

the predicted ψ∗
D for cylindrical or spherical pores was larger than that of pla-

nar electrodes. The difference increased with increasing ψ∗
s and decreasing R∗

0.

The maximum relative difference was less than 15% and 30% for cylindrical and

spherical pores, respectively, for the range of R∗
0 and ψs considered. Overall, these

results demonstrate that the correlation for the equilibrium diffuse layer potential

for planar electrodes [Equation (6.15)] may be applied to cylindrical or spherical

pores with acceptable accuracy.

6.4.2 Equilibrium Integral Capacitance

Combining Equations (6.11) and (6.15), the dimensionless equilibrium integral

capacitance C∗
s,planar for planar electrodes can be expressed in terms of the three

dimensionless numbers identified previously ψ∗
s , νp, and a

∗ as

1

C∗
s,planar

= 1 +
0.74ψ∗1.16

s

a∗

{
2

νp
ln

[
1 + 2νp sinh

2(0.185ψ∗1.16
s )

]}−1/2

(6.16)

Note that, under equilibrium conditions, C∗
s,planar does not depend on L∗ as also

observed in CV simulations at low scan rates [149]. This analytical expression

enables the prediction of the integral capacitance of planar electrodes without

solving the MPB model.
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Figure 6.2: Predicted dimensionless diffuse layer potential ψ∗
D as a function of

dimensionless surface potential ψ∗
s for (a) cylindrical and (b) spherical pores ob-

tained from MPB model with Stern layer for different values of R∗
0, a

∗, and νp.

6.4.3 Experimental Data

A wide range of experimental data was collected from the literature in order to

assess the applicability of the above scaling analysis to actual carbon-based porous

electrodes. Experimental data were selected to ensure that (i) the electrolytes were

binary and symmetric such as KOH and TEABF4, (ii) the reported capacitance

was the integral areal capacitance and not the differential areal capacitance, and

(iii) the integral areal capacitance was measured using either cyclic voltammetry

at low scan rates or galvanostatic charge/discharge at low currents corresponding

to the quasi-equilibrium regime. Then, the integral areal capacitances measured

using these two techniques were identical as quasi-equilibrium conditions prevailed

[16, 149]. It is convenient to consider the areal capacitance as it accounts for the

possibility that electrodes might have different porosity and surface area per unit

volume.

Table 6.1 summarizes the experimental data reported in the literature for

95



EDLCs with various electrolytes, electrode pore radii R0, and potential windows

∆ψ = 2ψs along with the corresponding range of the experimentally-measured

integral areal capacitance, denoted by Cs,exp (in µF/cm2). The electrodes con-

sisted of various mesoporous carbons, namely (i) titanium carbide-derived car-

bon (TiC-CDC) [37], (ii) ordered mesoporous carbon (OMC) [237, 238, 262–264],

(iii) highly-ordered mesoporous carbon (HOMC) [265], (iv) graphene nanosheet

(GNS) and graphene nanosheet/carbon black composites (GNS/CB) [266], (v)

free-standing mesoporous carbon thin films (FSMC) [236], (vi) cubic mesoporous

carbon (CMK), (vii) acid-modified CMK (H-CMK) [239], (viii) carbon foams

[267], (ix) ginkgo activated carbon shells (GAC) [268], and (x) hierarchical porous

core-shell carbon structure (C-CS) [269]. The electrode average pore radius var-

ied from 0.36 to 3.25 nm. Three different electrolytes were considered including

aqueous KOH and TEABF4 in propylene carbonate (PC) or acetonitrile (AN) at

concentrations c∞ between 1 and 6.88 M. Anion and cation effective diameters

typically differ, at least slightly. For example, OH− and TEA+ ions are slightly

larger than K+ and BF−
4 , respectively. However, they were assumed to be identi-

cal. The non-solvated effective ion diameter a was taken as 0.35 nm for ions K+

and OH− in water. It was assumed to be 0.68 nm for TEA+ and BF−
4 [37,200]. The

potential window varied between 0.6 V and 2.3 V depending on the electrolyte.

Overall, a total of 56 experimental data points were collected corresponding to

dimensionless numbers in the ranges 23 ≤ ∆ψ∗ = 2ψ∗
s ≤ 90, 0.1 ≤ νp ≤ 0.57,

1.6 ≤ a∗ ≤ 4.05 (based on non-solvated ion diameters), and 1.4 ≤ R∗
0 ≤ 40.2.

Figure 6.3a shows the reported integral areal capacitance Cs,exp as a function of

the reported average pore radius R0 for the above-mentioned experimental data.

As expected, these data are scattered and the capacitance varies from 5.5 to 47

µF/cm2 due to the wide range of electrolytes, electrode morphologies, pore sizes,

and potential windows considered. On the other hand, Figure 6.3b shows the

same data plotted in terms of the ratio Cs,exp/Cs,planar as a function of R∗
0 − a∗/2.
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Table 6.1: Summary of experimental data reported in the literature for var-

ious carbon electrodes, binary and symmetric electrolytes, potential window

∆ψ = 2ψs, and average pore radius R0 along with their integral capacitance

Cs,exp (in µF/cm2).

Ref. Electrode R0 (nm) Electrolyte ∆ψ = 2ψs (V) Cs,exp (µF/cm2)

[37] TiC-CDC 0.68-1.09 1 M TEABF4 in AN 2.3 6.0-13.6

[262] OMC-M 2.15-4.25 6.88 M KOH 0.8 16.8-27.5

[262] OMC-K 1.95-4.7 6.88 M KOH 0.8 12.0-22.5

[266] GNS/CB 0.364-0.37 6 M KOH 1 28.3-46.6

[265] HOMC 0.37-0.41 6 M KOH 1 8.2-11.2

[236] FSMC 2.15 6 M KOH 0.6 19.4

[263] OMC 1.35-3.0 6 M KOH 1 5.8-11.8

[263] OMC 1.35-3.0 1 M TEABF4 in AN 2 5.2-6.7

[237] OMC 2.7-3.25 6.88 M KOH 0.89 11.9-15.0

[239] CMK-8 2.39 2 M KOH 1 13.3

[239] H-CMK-8 2.33 2 M KOH 1 20.2

[238] OMC 2.25 6 M KOH 0.8 18.8

[270] MC spheres 1.34 2 M KOH 1 11.1

[271] MC 0.625-0.69 1 M TEABF4 in AN 2 10.3-11.6

[264] OMC 0.395-0.555 1 M TEABF4 in PC 2 5.5-6.7

[267] Carbon foam 1.9 6 M KOH 1 12.5

[272] OMC 0.6 6 M KOH 0.8 14.1-19.6

[268] GAC 0.245-0.26 6 M KOH 1 13.4-17.7

[269] C-CS 1.95 6 M KOH 0.9 10.6-16

Note: solvent for KOH was water.

It indicates that Cs,exp/Cs,planar decreased from 0.5 to about 0.1 when R∗
0 − a∗/2

increases from 0 to 40. First, it is remarkable that the experimental capacitances of

mesoporous carbon electrodes had the same order of magnitude as the theoretical

capacitance for planar electrodes Cs,planar. It is also worth noting that plotting

the data in terms of Cs,exp/Cs,planar versus R∗
0 − a∗/2 significantly reduced the
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scatter compared to Figure 6.3a and described a consistent trend. The capacitance

ratio Cs,exp/Cs,planar increased as the dimensionless pore radius R∗
0 decreased and

approached the dimensionless ion radius a∗/2. As the pore radius increased, the

capacitance ratio Cs,exp/Cs,planar reached a plateau of around 0.08. Curve fitting

of the experimental data led to the following correlation,

Cs,pred

Cs,planar

= 0.08 +
0.084√
R∗

0 − a∗/2
. (6.17)

Figure 6.3b also shows curves with ±20% deviations. The scatter in the exper-

imental data and the fact that Cs,exp differs from Cs,planar for large values of R0

can be attributed to the following main reasons: (i) experimentally, the pores

featured a nonuniform size distribution while the scaling analysis was based on

the reported average pore radius, (ii) the relative permittivity ϵr was assumed to

be constant while it may vary significantly under high the electric fields such as

those encountered near the electrode surface [199, 228], (iii) the electrolytes were

assumed to be symmetric while anions and cations may have different solvated

and/or non-solvated ion diameters, and (iv) the simple cubic packing of ions near

the electrode assumed in formulating the MPB model may be overly simplistic.

Note that attempts to account for the field-dependent dielectric constant in the

Stern layer did not yield a better correlation (not shown). In other words, the

semi-empirical constant in Equation (6.17) overall accounted for this effect.

The scaling law given by Equation (6.17) indicates that the equilibrium integral

capacitance of mesoporous carbons with binary and symmetric electrolytes can

be expressed as

Cs,pred = f(R∗
0 − a∗/2)Cs,planar (6.18)

where Cs,planar is the equilibrium areal capacitance of the planar electrode given

by Equation (8.16) while f(R∗
0 − a∗/2) is a geometric function correcting for the

fact that pore/electrolyte interfaces are not planar. It is constant in the limiting

case when R0 ≫ a/2 or R∗
0 ≫ a∗/2 such that the effect of the pore curvature on
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Figure 6.3: (a) Experimental data of integral capacitance Cs,exp as a function of

pore radius R0 and (b) the ratio Cs,exp/Cs,planar as a function of R∗
0 − a∗/2 for

EDLCs with various mesoporous carbon electrodes and binary symmetric elec-

trolytes.
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the areal capacitance is negligible.

Sensitivity analysis of this semi-empirical model was performed by randomly

sampling it with 1300 sets of input parameters with electrolyte properties (i) a

ranging from 0.1 to 1 nm, (ii) ϵr between 20 and 100, (iii) c∞ from 1 to 6 M,

and (iv) z with integer values between 1 and 3. The electrode properties were

such that (v) R0 ranged from 1 to 10 nm and (vi) ψs varied between 1 and 3

V. Scatter plots of Cs,pred against each individual input variable indicates that

the integral areal capacitance was most sensitive to the effective ion diameter

a and the ion valency z followed by the electrolyte dielectric constant ϵr. This

can be attributed to the fact that under large ion concentrations and potential

windows, the total capacitance was dominated by the Stern layer capacitance

expressed as CSt
s = 2ϵ0ϵr/a. Interestingly, Cs,pred was only weakly sensitive to

the surface potential ψs. However, the fact that the total energy stored E (in

J) is proportional to ψs, i.e., E = Cψ2
s/2 confirms the importance of maximizing

the potential window to maximize EDLCs’ performance. Similarly, Cs,pred was

weakly sensitive to the pore radius R0 except as R0 approaches a, as suggested

by Equation (6.17). Note that reducing the pore size also increases the interfacial

area Ai between the electrode and the electrolyte and thus the total energy E and

the capacitance C (in F) given by C = Cs,pred × Ai.

6.5 Conclusions

This chapter presented scaling analysis of equilibrium MPB model for the electric

double layer integral capacitance Cs,planar for planar electrodes in binary and sym-

metric electrolytes. It was based on a power law correlation for the equilibrium

diffuse layer potential. For the first time, a scaling law was derived to predict the

integral areal capacitance Cs,pred of porous electrodes as the product of an ana-

lytical expression [Equation (6.16)] and a semi-empirical function f(R∗
0 − a∗/2)

accounting for the porous electrode morphology. The latter was obtained using
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experimentally-measured integral areal capacitance Cs,exp for EDLCs with vari-

ous porous carbon electrodes and binary symmetric electrolytes. The scaling law

indicates that the integral areal capacitance was most sensitive to the ions’ effec-

tive diameter and valency and to the electrolyte dielectric constant. It was also

sensitive to the pore radius R0 only as R0 approaches the ion radius a/2. Overall,

to achieve large integral areal capacitance (i) the effective ion diameter a should

be small, (ii) the electrolyte dielectric constant ϵr should be large, (iii) the pores

should be as monodisperse as possible, and (iv) their radius R0 should be tailored

to match the ion diameter, i.e., 2R0 ≈ a. Finally, (v) the ion valency z should be

large. The total energy stored can be further enhanced by increasing the surface

potential ψs or the potential window and the interfacial area between electrode

and electrolyte.
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CHAPTER 7

Physical Modeling of Electrochemical

Impedance Spectroscopy for EDLCs

Chapters 3 to 6 presented equilibrium simulations of EDLCs. To better under-

stand their charging/discharging performances, dynamic modeling of EDLCs is

essential. This chapter presents physical modeling of charging/discharging dy-

namics of electric double layers during electrochemical impedance spectroscopy

(EIS) measurements.

7.1 Introduction

Electrochemical impedance spectroscopy (EIS) is a powerful tool in the field of

electrochemistry [9, 11–13, 273]. It has been used extensively to characterize the

performance of various electrical energy storage devices such as electrochemical

capacitors (also known as supercapacitors) [10,14,25,31,274–278], batteries [279–

281], and fuel cells [13, 282]. In these applications, the charged electrodes are

typically immersed in the electrolyte solution. Electric double layers form at

the electrode/electrolyte interfaces which are accessible to ions present in the

electrolyte.

EIS measurements consist of imposing a time harmonic electric potential with

a certain frequency at the electrodes. This harmonic potential consists of two

components: (i) a time-independent “DC potential” and (ii) a periodically oscil-

lating potential with a small amplitude typically less than 10 mV [13, 31, 277].
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The resulting electric current is recorded. Then, the magnitude of the electro-

chemical impedance can be defined as the ratio of the amplitudes of oscillating

potential and current while its phase angle is the shift by which the current is

ahead of the potential [9, 11–13]. A simple RC circuit consisting of a resistor

and a capacitor in series is most commonly used to model pure electric double

layers (i.e., without Faradic reaction) forming at an electrode as shown in Figure

8.1c [9, 11–14, 274–276]. The resistance and differential capacitance for a given

frequency are retrieved from the in-phase and out-of-phase components of the

measured electrochemical impedance, respectively [9,11–14,274–276]. The double

layer differential capacitance measured by EIS is typically plotted as a function

of frequency [12, 14, 25, 31, 43, 204, 274–276,278, 283–290]. It is known to decrease

with increasing frequency beyond a critical frequency due to the fact that the

double layer is not ideally capacitive at large frequencies [287–290]. It has also

been referred to as double layer impedance [288–291]. The capacitance retrieved

from EIS measurements at low frequencies has been regarded as an estimate of

the differential capacitance at the imposed DC potential [14,31,274,292].

In comparison, cyclic voltammetry (CV) and galvanostatic charge/discharge

techniques can measure both differential and integral capacitances as discussed

in Section 2.1. EIS, CV, and galvanostatic charge/discharge methods have been

extensively used to measure the capacitances of various electrical energy storage

devices. However, the measured capacitances using these techniques have been

frequently reported and compared without any discrimination between differential

and integral capacitances in the literature [28, 43, 78, 79, 285, 286, 293–295]. For

example, the differential capacitance of various supercapacitors estimated from

EIS or CV measurements have been compared with their integral capacitance

measured using CV or galvanostatic charge/discharge method in Refs. [43,78,79,

285,286,293,294].

This study aims to clarify the confusion in the literature when comparing
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the electric double layer capacitances measured using EIS and other techniques.

The EIS measurements were simulated by modeling ion transport in electrolyte

solutions as a function of frequency. The results were compared with the analytical

expressions for integral and differential capacitances under equilibrium conditions.

7.2 Background

7.2.1 Electrochemical Impedance Spectroscopy

In EIS measurements, the electric potential ψs(t) imposed at the electrode is a

harmonic function of time t. This results in a harmonic current density js (in

A/m2) provided that the amplitude of the harmonic potential is small enough

(e.g., less than 10 mV). Using complex notations, the imposed electric potential

and the corresponding current density can be expressed as [9, 11–13],

ψs(t) = ψdc + ψ0e
i2πft and js(t) = jdc + j0e

i(2πft−ϕ) (7.1)

where ψdc and jdc are time-independent DC potential and DC current density,

respectively. Here, ψ0 and j0 are the amplitudes of the potential and current

density around their DC components, respectively. The imaginary unit is denoted

by i, f is the frequency expressed in Hz, while ϕ(f) is the frequency-dependent

phase angle between the harmonic potential ψs(t) and the current density js(t).

The complex electrochemical impedance Z is defined as [9, 11–13],

Z =
ψ0

j0
eiϕ = Z ′ + iZ ′′ (7.2)

where Z ′ and Z ′′ (expressed in Ωm2) are the real and imaginary parts of the

impedance, respectively. Based on the equivalent RC circuit shown in Figure

8.1c, the resistance and differential capacitance per unit surface area are given

by [9, 11–14],

REIS
s = Z ′ and CEIS

s =
−1

2πfZ ′′ (7.3)
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Equation (7.3) is the most commonly used formula to determine the differential

capacitance of EDLCs from EIS measurements [14, 25, 43, 204, 274–276, 284–286,

293]. Alternatively, more complicated RC circuits [10,296,297] or transmission line

models [10,298–303] have also been developed to represent electric double layers by

introducing more resistor and capacitor components. Then, these models have to

be fitted with experimental EIS data to retrieve the resistances and capacitances.

However, these models suffer from other drawbacks as stated in Ref. [304]: “First,

it is possible for two different models to produce the same impedance response

[...]. Second, the overall impedance expressions corresponding to most models

give little or no direct information about the physical meaning of the elements

for such models.” Note also that the fitted pseudocapacitance values based on

complex RC circuits were also reported to underpredict those measured using

other techniques [305–309].

7.2.2 Ion Transport in Electrolyte Solutions

It is well known that ion transport in dilute electrolyte solutions can be accurately

described by the classical Poisson-Nernst-Planck (PNP) model [9,90,95,146]. The

PNP model has been used extensively to investigate EIS and reaction kinetics

of one-dimensional electrolytic cells [288–291, 310] and ion-exchange membranes

[311–315]. However, the PNP model neglects the finite size of ions and treat

ions as point-charges. This assumption is appropriate only when both the ion

concentration c∞ and the electric potential are small [95,146].

Recently, efforts have been made to account for the effect of finite ion size in

modeling ion transport in concentrated electrolyte solutions. Lim et al. [316,317]

used the classical Nernst-Planck model and accounted for the finite ion size by

adding a Stern layer. Their model imposed linear potential profile and uniform

ion concentrations in the Stern layer. However, it was limited to relatively low

surface potential and electrolyte concentration, i.e., ψs ≤ 0.2 V and c∞ ≤ 0.01

105



mol/L. Kilic et al. [146] derived a modified PNP (MPNP) model valid for bi-

nary and symmetric electrolytes under large electrolyte concentration and electric

potential. They added an excess term in the expression of the electrochemical

potential to account for the finite ion size. They solved the MPNP model numer-

ically for a planar electrode and predicted the profiles of electric potential and

ion concentrations in the diffuse layer [146]. Their results demonstrated that un-

der large electrolyte concentration and electric potential, the predictions of PNP

model deviated significantly from the MPNP model due to the point-charge as-

sumption. Alternatively, Horno and co-workers [113,153] accounted for the finite

ion size in ion mass fluxes using the activity coefficient. It was later demonstrated

that Kilic’s model [146] can be formulated in a form equivalent to that based on

activity coefficient [95, 130]. However, to the best of our knowledge, no studies

have simulated EIS measurements under both large electrolyte concentrations and

electric potential other than by using RC circuits [10,14,274] or transmission line

models [10,300–303].

This chapter aims to simulate the electric double layer dynamics and to predict

electric double layer capacitances in EIS measurements. The transient double

layer dynamics was simulated for the electric double layer formed near a planar

electrode in aqueous electrolyte solutions. For low electrolyte concentrations, the

classical Poisson-Nernst-Planck (PNP) model with or without the Stern layer was

solved. Instead, for large electrolyte concentrations, a modified PNP model [146]

was used accounting for the Stern layer.

7.3 Analysis

7.3.1 Schematics and Assumptions

Figure 7.1 shows the schematic of the computational domain simulating a planar

electrode immersed in an electrolyte solution. The region of electrolyte solution
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consists of two layers corresponding to (1) a Stern layer of thickness H near the

electrode surface and (2) a diffuse layer beyond. A time-dependent electric poten-

tial ψs(t) was prescribed at the electrode surface and was zero far away from the

electrode surface. The length of the overall computational domain was specified

to be (i) L = 160 nm for electrolyte concentration c∞ less than 0.01 mol/L and

(ii) L = 80 nm for c∞=1 mol/L. Note that the electric double layer thickness

decreases with increasing electrolyte concentration [35, 95, 146]. Increasing the

value of L by a factor of two was found to have no effect on (i) the predicted

integral capacitance Cs under equilibrium conditions and (ii) the differential ca-

pacitance CEIS
s retrieved from EIS simulations at low frequency using Equation

(7.3). However, the values of CEIS
s predicted at large frequencies were found to

decrease with increasing L. This can be attributed to the fact that the charge

storage or charge relaxation took longer as the domain length L increased under

large frequencies [128]. Then, the charge storage at large frequencies was limited

as it could not follow the fast variation in the electric potential. Figure 8.1b shows

the typical representation of an electric double layer capacitance with the Stern

layer and diffuse layer capacitances in series [8–10,36].

To make the problem mathematically tractable, the following assumptions

were made: (1) anions and cations had the same effective diameter and diffu-

sion coefficient which were assumed to be constant and independent of electrolyte

concentration [4, 95, 200], (2) the electrolyte dielectric relative permittivity was

constant, independent of frequency, and equals to that of water. Note that the

relative permittivity of water at room temperature is known to significantly de-

crease for frequency larger than 5× 109 Hz [253]. The frequency range considered

here did not exceed this value except otherwise mentioned, (3) isothermal con-

ditions prevailed throughout the electrode and electrolyte, (4) advection of the

electrolyte was assumed to be negligible, (5) the ions could only accumulate at

the electrode surface and could not diffuse into the electrode, i.e., there was no
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Figure 7.1: Schematic of (a) the electric double layer structure showing the ar-

rangement of solvated anions and cations near an anode/electrolyte interface and

the simulated computational domain consisting of the Stern layer and the diffuse

layer, (b) the Stern and diffuse layer capacitances in series [8–10], and (c) the

equivalent RC circuit used in EIS [9, 11–14].

ion insertion, and (6) the specific ion adsorption due to non-electrostatic forces

were assumed to be negligible.

7.3.2 Governing Equation and Boundary Conditions

The local electric potential ψ(x, t) and ion concentrations ci(x, t) in the electrolyte

solution were computed by solving (i) the Poisson equation in the Stern and

diffuse layers [8, 316, 317] and (ii) the PNP or MPNP model in the diffuse layer

for small or large electrolyte concentration, respectively [95,130,146]. For binary

and symmetric electrolytes, the valency is such that z1 = −z2 = z and the bulk

ion concentration is given by c1∞ = c2∞ = c∞. Then, assuming identical diffusion
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coefficient D1 = D2 = D, the MPNP model with Stern layer can be written

as [95,130,146],

∂

∂x

(
ϵ0ϵr

∂ψ

∂x

)
=

{
0 for 0 ≤ x < H (7.4a)

eNAz(c1 − c2) for x ≥ H (7.4b)

∂ci
∂t

=
∂

∂x

(
D
∂ci
∂x

+
ziD

RuT
Fci

∂ψ

∂x
+

νpDci
2c∞ − νp(c1 + c2)

∂(c1 + c2)

∂x

)
for x ≥ H (7.4c)

where ci(x, t) is the local molar concentration of ion species “i” (i = 1, 2). The

Cartesian coordinate is denoted by x while ϵ0 and ϵr are the free space permittivity

(ϵ0 = 8.854× 10−12 F/m) and the relative permittivity of the electrolyte solution,

respectively. The absolute temperature is denoted by T , e is the elementary charge

(e = 1.602× 10−19 C), NA is the Avogadro’s number (NA = 6.022× 1023 mol−1)

while F and Ru are the Faraday constant (F = eNA sA/mol) and the universal gas

constant (Ru = 8.314 JK−1mol−1), respectively. The packing parameter is defined

as νp = 2a3NAc∞ where a is the effective ion diameter. It represents the ratio of

the total bulk ion concentration to the maximum ion concentration cm = 1/NAa
3

assuming a simple cubic ion packing [95, 130, 146]. Therefore, νp should not be

larger than unity for the model to be physically acceptable [95,130,146]. Equations

(7.4b) and (7.4c) reduce to the classical Poisson-Nernst-Planck model when νp = 0

[95, 130, 146]. Note that in Refs. [95, 130, 146], the Stern layer was accounted

for via a boundary condition relating the potential drop across the Stern layer

and the potential gradient at the Stern/diffuse layer interface. Here, the electric

potential in the Stern layer was solved explicitly. In fact, these two approaches

are equivalent for planar electrodes [130,146,228].

Moreover, the associated boundary and initial conditions were given by [8,90,
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146],

ψ(x = 0, t) = ψs(t), (7.5a)

ψ
∣∣
x=H− = ψ

∣∣
x=H+ and ϵ0ϵr

dψ

dx

∣∣∣∣
x=H−

= ϵ0ϵr
dψ

dx

∣∣∣∣
x=H+

, (7.5b)

D
∂ci
∂x

+
ziD

RuT
Fci

∂ψ

∂x
+

νpDci
2c∞ − νp(c1 + c2)

∂(c1 + c2)

∂x
= 0, at x = H (7.5c)

ψ(x = L, t) = 0 and ci(x = L, t) = c∞, (7.5d)

ψ(x, t = 0) = 0 and ci(x, t = 0) = c∞, for 0 ≤ x ≤ L (7.5e)

Note that the surface electric potential ψs(t) in Equation (7.5a) was given by

Equation (7.1). Equation (7.5b) states that the electric potential and displacement

were continuous across the Stern/diffuse layer interface located at x = H [8, 90].

Equation (7.5c) indicates that the mass fluxes vanish for both ion species at the

electrode surface since there is no ion insertion [assumption (6)] [95, 146]. Note

that, whenH = 0 nm, Equations (7.4) and (7.5) correspond to simulations without

the Stern layer.

7.3.3 Constitutive Relations

In order to solve Equations (7.4) and (7.5), the electrolyte properties ϵr, z, c∞, a

and D along with the temperature T and the surface potential ψs(t) are needed.

The present study focuses on aqueous electrolyte solution at room temperature

(T = 298 K) with ϵr = 78.5 [253]. Note that the electrolyte dielectric permit-

tivity decreases at large local electric field [199, 228]. The electric double layer

capacitance may decrease by a factor two or three when accounting for this ef-

fect [199, 228]. However, this is not expected to affect either the comparison

between the capacitance under equilibrium conditions and that retrieved from

EIS simulations or the qualitative conclusions of the present study.

The effective ion diameter and diffusion coefficient were taken as a = 0.66

nm [200] and D = 2 × 10−9 m2/s [253], respectively, while the valency was z =
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1. These values correspond to solvated ions such as K+ and Cl− in aqueous

solutions. The diffusion coefficients of ions such as K+ and Cl− are known to

decrease by about 10% when increasing the electrolyte concentration from 0 to

1 mol/L [318]. In addition, ion diffusion coefficients significantly decrease in the

presence of charged obstacles [319] or porous electrodes [320]. Here, a parametric

study was also carried out for other values of diffusion coefficient, namely, D =

2 × 10−8 and 2 × 10−10 m2/s. The electrolyte concentration was chosen as (i)

c∞ = 0.01 and 0.001 mol/L so that the classical PNP model is valid and (ii) c∞ =

1.0 mol/L corresponding to typical values in actual electrochemical capacitors. In

addition, the Stern layer thickness H was approximated as the radius of solvated

ions [9, 35,36], i.e., H = a/2 = 0.33 nm.

Moreover, the DC potential component ψdc of the harmonic surface electric

potential ψs(t) was varied from 0.01 to 0.5 V. A DC potential of ψdc = 0.5 V

corresponds to a typical potential difference of 1 V between the anode and the

cathode for aqueous electrochemical capacitors. The amplitude of the potential

oscillation was taken as (i) ψ0 = 0.001 V for ψdc ≤ 0.1 V and (ii) ψ0 = 0.005 V

for ψdc > 0.1 V. Decreasing ψ0 by up to a factor five was found to have no effect

on the predicted impedance and capacitance.

Finally, note that for low electrolyte concentrations c∞ = 0.001− 0.01 mol/L,

the frequency range explored in the present study was f = 10 − 107 Hz. It

was similar to the range f = 1 − 107 Hz in the experiments used for planar

electrodes of gold platted stainless steel in 0.001 − 0.01 mol/L KCl and BaCl2

electrolyte solutions [321]. For c∞ = 1 mol/L, frequency ranged from 103 to 109

Hz due to the significant decrease in the electrical resistance to ion transport

when increasing electrolyte concentration [311, 322] as discussed in Section 7.4.2.

However, these frequency ranges were several orders of magnitude larger than

those encountered in typical EIS measurements for electrochemical capacitors with

mesoporous electrodes where the frequency typically ranges from 10−3 to 105
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Hz [31, 43, 274–277]. The difference is due to the fact that the electrode was

not simulated in the present study. The electrical resistance of the mesoporous

electrodes is significantly larger than that of planar electrodes. This, in turn, limits

the range of frequencies in EIS measurements of practical EDLCs [14,274–276].

7.3.4 Method of Solution And Data Processing

Equations (7.4) were solved using the commercial finite element solver COMSOL

3.5a, along with the boundary and initial conditions given by Equations (7.5). The

capacitance under equilibrium conditions and the capacitance determined using

EIS simulations were computed as follows.

7.3.4.1 Integral Capacitance Under Equilibrium Conditions

The double layer integral capacitance under equilibrium conditions corresponds

to the time-independent surface potential, i.e., ψs(t) = ψdc. Then, the Stern

and diffuse layer integral capacitances CSt
s and CD

s are defined by dividing the

surface charge density [9, 35, 90, 201, 202] qs(x) = ϵ0ϵrE(x) by their respective

potential difference [9, 90, 228]. Here, E(x) = |−dψ/dx| is the norm of the local

electric field. The integral capacitances CSt
s and CD

s of planar electrodes assuming

constant electrolyte properties and accounting for the finite ion size are given

by [4, 9, 90, 95,228],

CSt
s =

qs(0)

ψs − ψD

=
ϵ0ϵr
H

(7.6a)

CD
s =

qs(H)

ψD

=
2zeNAc∞λD

ψD

√
2

νp
log

[
1 + 2νp sinh

2

(
zeψD

2kBT

)]
(7.6b)

where ψD = ψ(H) is the electric potential computed at the Stern layer/diffuse

layer interface x = H by solving the steady-state equilibrium modified Poisson-

Boltzmann model at surface potential ψdc and electrolyte concentration c∞ [4,95,

146, 228]. Then, the total integral capacitance Cs was calculated using the series
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formula as [9, 90, 228],

1

Cs

=
1

CSt
s

+
1

CD
s

(7.7)

Note that ψD = ψdc when computing the capacitance CD
s [Equation (8.15b)]

without the Stern layer.

7.3.5 Differential Capacitance Under Equilibrium Conditions

Unlike the integral capacitance, the differential capacitance Cdiff is defined as

dqs/dψs as discussed in Section 2.1. Under equilibrium conditions, the double

layer differential capacitance is given by [4, 102],

1

Cdiff

=
1

CSt
diff

+
1

CD
diff

with CSt
diff =

ϵ0ϵr
H

(7.8a)

where CSt
diff and CD

diff denote the Stern layer and diffuse layer differential capac-

itances, respectively. Here, ϵ0 and ϵr are the free space permittivity and relative

permittivity of the electrolyte, respectively. The diffuse layer differential capaci-

tance accounting for finite ion size is expressed as [4, 102],

CD
diff =

ϵ0ϵr
λD

sinh

(
zeψD

kBT

)
[
1 + 2νp sinh

2

(
zeψD

2kBT

)]√
2

νp
log

[
1 + 2νp sinh

2

(
zeψD

2kBT

)] (7.8b)

where the valency of the symmetric electrolyte is denoted by z, while T is the

temperature, c∞ is the bulk molar concentration of electrolyte, e is the elemen-

tary charge, NA and kB are the Avogadro constant and Boltzmann constant,

respectively. The packing parameter is defined as νp = 2a3NAc∞ where a is the

effective ion diameter. The electric potential at the Stern/diffuse layer interface

is denoted by ψD. Note that ψD = ψs for simulations without Stern layer. It is

also important to note that in the presence of the Stern layer, the value of ψD

in Equations (7.6b) and (7.8b) is unknown. In fact, ψD varies significantly with

varying ψs. Its value must be determined numerically by solving the equilibrium

modified Poisson-Boltzmann model with the Stern layer [4, 146,149,228].

113



7.3.5.1 Simulating EIS Measurements

EIS measurements were simulated by numerically imposing the harmonic surface

electric potential given by Equation (7.1). The corresponding transient surface

capacitive current density was estimated as [201,202,291,311,312,323–326],

jC(t) =
dqs
dt

= ϵ0ϵr
dEs

dt
(7.9)

where Es(t) = − (∂ψ/∂x) (x = 0, t) is the electric field at the electrode surface

x = 0 at time t. Simulations of EIS measurements were run for at least 50 periods

(i.e., t ≥ 50/f) to ensure the current density and impedance had reached their

stationary and periodic states. Then, the electrochemical impedance Z as well

as the associated differential capacitance CEIS
s were computed using Equations

(7.2) and (7.3), respectively. The convergence criterion was defined such that

the maximum relative difference in the predicted CEIS
s was less than 2% when

(1) multiplying the total number of finite elements by two, (2) dividing the time

step by two, and (3) running the EIS simulations for 50 more periods. The

time step was imposed to be ∆t ≲ 1/400f . The mesh size was smallest at the

electrode surface due to large potential gradient and then gradually increased.

The maximum mesh size was specified to be 0.01 nm at the electrode surface and

1 nm in the rest of the domain. The total number of finite elements was less than

300 for all cases simulated in the present study.

7.3.5.2 Validation

The numerical tool was validated based on three cases reported in the literature.

First, the predicted equilibrium electric potential profile in the diffuse layer was

validated against the exact solution for planar electrodes [8,35,90] with ϵr = 78.5,

c∞ = 0.01 and 0.001 mol/L, νp = 0, and ψD = 0.1 V. Second, the computed

integral capacitances for the Stern and diffuse layers under equilibrium conditions

were validated against Equations (7.6a) and (7.6b) for (i) ψs = 0.1 V, c∞ = 0.01
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mol/L, and a = 0.66 nm as well as (ii) ψs = 0.5 V, c∞ = 1 mol/L, and a = 0.66

nm. Third, the predicted transient ion concentration and electric potential profiles

were compared with the numerical solutions for planar electrodes using PNP and

MPNP models reported in Ref. [146]. Comparison was made for a wide range of

packing parameter νp and dimensionless potential (zeψD/kBT ). Good agreement

was obtained between our results and reported values of ci(x, t) and ψ(x, t) [146]

for all cases considered.

7.4 Results and Discussions

7.4.1 EIS in Dilute Electrolyte Solutions

7.4.1.1 Predictions By PNP Model Without Stern Layer

Figure 7.2(a) shows the predicted diffuse layer differential capacitance CEIS
s from

EIS simulations using Equation (7.3) as a function of frequency ranging from 10

to 107 Hz. Results were obtained by numerically solving the classical PNP model

without the Stern layer, i.e., νp = 0 and H = 0 nm. The electrolyte concentration

was either c∞ = 0.001 or 0.01 mol/L while ψdc = 0.1 V. The effect of diffusion

coefficient was assessed by performing simulations for D = 2×10−8, 2×10−9, and

2×10−10 m2/s. Figure 7.2(a) demonstrates that, forD = 2×10−8 m2/s, the diffuse

layer differential capacitance CEIS
s was independent of frequency for f ≤ 105 Hz

for both electrolyte concentrations considered. Then, it decreased with increasing

frequency beyond 105 Hz. Similarly, for smaller diffusion coefficients D = 2×10−9

and 2 × 10−10 m2/s, CEIS
s was independent of frequency for f ≤ 104 and 103

Hz, respectively. Below these frequencies, CEIS
s was independent of diffusion

coefficient and was identical to the theoretical diffuse layer differential capacitance

given by Equation (7.8b) with νp = 0. This suggests that ion transport by diffusion

becomes a limiting factor in charge storage for frequencies larger than a critical

frequency which depends on the ion diffusion coefficient D.
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Figure 7.2: (a) Differential capacitance determined from EIS simulations as a

function of frequency f and (b) normalized differential capacitance CEIS
s /CD

diff

as a function of dimensionless frequency τmf for different values of ion diffusion

coefficient. Results were obtained by numerically solving the classical PNP model

without Stern layer (H = 0 nm) for c∞ = 0.001 or 0.01 mol/L and ψdc = 0.1 V.

The theoretical diffuse layer integral and differential capacitances, denoted by CD
s

and CD
diff [Equations (7.6b) and (7.8b)], are also shown.
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Figure 7.2(a) also shows the the theoretical equilibrium diffuse layer integral

capacitance CD
s given by Equation (7.6b) with νp = 0 for c∞ = 0.001 and 0.01

mol/L and equals to 12.7 µF/cm2 and 40.3 µF/cm2, respectively. It is evident

that the equilibrium diffuse layer differential capacitance CD
diff was larger than

the integral capacitance CD
s [Equation (7.6b)] by about 100%.

As opposed to a dielectric capacitor, the electric double layer capacitance

of porous electrodes is known to depend on frequency. The origin of this so-

called “capacitance dispersion” of electrode materials [11, 302, 303, 327–330] has

been attributed to various phenomena such as surface inhomogeneity (e.g., de-

fect) [330], surface roughness [11, 327–329], pore size distribution in porous elec-

trodes [302, 303], as well as specific ion adsorption [11, 329], to name a few.

However, Figure 7.2(a) demonstrates that electric double layers feature capac-

itance dispersion at high frequencies even for perfectly planar electrodes when

only electrostatic phenomena were accounted for. Similar trend was observed in

Refs. [287–290] based on the exact solution of the linearized PNP model without

Stern layer and assuming zero DC potential. Then, Figure 7.2(a) establishes that,

besides the above-mentioned mechanisms, the capacitance dispersion can be also

attributed to the fact that, at high frequencies, ion transport cannot follow the

rapid variations in the electric potential.

Moreover, Figure 7.2(b) plots the normalized differential capacitance CEIS
s /CD

diff

as a function of dimensionless frequency τmf where τm is the characteristic diffu-

sion time scale defined as

τm = λ2m/D with λm = (ϵ0ϵrkBT/2e
2z2NAcm)

1/2 (7.10)

Here, λm is analogous to the Debye length λD defined based on the maximum con-

centration cm instead of the bulk electrolyte concentration c∞. The data of CEIS
s

and CD
diff were the same as those shown in Figure 7.2. Note that the traditional

diffusion characteristic time is typically defined as τL = L2/D [128] where the
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characteristic length is the computational domain length L. Here, τL was not the

proper characteristic time since the predicted CEIS
s at low frequency was found to

be independent of L as previously discussed. In addition, Figure 7.2(b) shows that

the critical frequency below which CEIS
s is constant was independent of electrolyte

concentration c∞. Then, time scales involving c∞ are also inadequate including

the characteristic time for charge relaxation defined as τD = λ2D/D [128]. Figure

7.2(b) demonstrates that the predicted CEIS
s /CD

diff versus τmf curves for three

different diffusion coefficients overlapped for each value of electrolyte concentra-

tion considered. Moreover, two region can be identified in Figure 7.2(b). First, for

τmf < 2× 10−8, ion transport is fast enough to follow the variation in the electric

potential ψs(t) and thus the differential capacitance CEIS
s is independent of fre-

quency. In these cases, CEIS
s /CD

diff was equal to 1.0 regardless of the electrolyte

concentration c∞. Second, for τmf > 2 × 10−8, ion transport was the limiting

phenomenon for charge storage and CEIS
s decreased with increasing frequency.

To better understand these results, Figures 7.3(a) and 7.3(b) show the im-

posed surface potential ψs(t) and the resulting instantaneous surface charge den-

sity qs(t) = ϵ0ϵrEs(t) as a function of dimensionless time t×f ranging from 0 to 10

at two different frequencies, i.e., f = 10 and 105 Hz. The electrolyte concentration

was c∞ = 0.01 mol/L and the diffusion coefficient was taken as D = 2 × 10−8,

2 × 10−9, or 2 × 10−10 m2/s. The model and other parameters were identical

to those used to generate Figure 7.2. Note that the origin of time t was shifted

to the time when qs(t) reached its stationary periodic oscillations. Figure 7.3(a)

shows that the instantaneous surface charge density qs(t) was nearly in phase

with the imposed surface potential ψs(t) at f = 10 Hz. At this frequency, the

diffusion coefficient had no effect on the predicted qs(t) and the plots overlap for

D = 2× 10−8 to 2× 10−10 m2/s. In addition, Figure 7.3(b) shows qs(t) and ψs(t)

at high frequency f = 105 Hz. It is evident that qs(t) and ψs(t) were nearly in

phase with each other for D = 2×10−8 m2/s. However, they were not in phase for
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small values of D. The phase depended on the diffusion coefficient. In addition,

the amplitude of qs(t) increased with increasing diffusion coefficient and decreased

with increasing frequency.
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Figure 7.3: Imposed surface potential ψs(t) and predicted instantaneous surface

charge density qs(t) as a function of dimensionless time t×f for (a) f = 10 Hz and

(b) f = 105 Hz obtained by numerically solving the classical PNP model without

Stern layer. The electrolyte concentration was c∞ = 0.01 mol/L while ψdc = 0.1

V and D = 2× 10−8, 2× 10−9, and 2× 10−10 m2/s.

Furthermore, Figure 7.4(a) shows the predicted phase angle φ between the

instantaneous charge density qs(t) and the imposed surface potential ψs(t) for

the same frequency range and parameters as those used to generate Figure 7.2.

Figure 7.4(a) shows that the phase angle φ was nearly zero at low frequency and

increased rapidly beyond a critical frequency. In addition, for a given frequency f ,

the phase angle decreased with increasing diffusion coefficient D thanks to faster

ion transport. It also decreased with increasing electrolyte concentration due to

decreasing electrolyte resistance to ionic current [311,322].

Finally, Figure 7.4(b) plots the phase angle shown in Figure 7.4(a) as a function

of the dimensionless frequency τmf . Here also, the plots of phase angle φ versus

τmf for different values of diffusion coefficient D collapsed on one line for each
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Figure 7.4: Predicted phase angle φ between the instantaneous surface charge

density qs(t) and the imposed surface potential ψs(t) as a function of (a) frequency

f and (b) dimensionless frequency τmf . Results were obtained by numerically

solving the classical PNP model without Stern layer with c∞ = 0.001 or 0.01

mol/L, ψdc = 0.1 V for D = 2× 10−8, 2× 10−9, and 2× 10−10 m2/s.

concentration considered. This confirms that τm is the characteristic time for

ion diffusion in electric double layer during EIS measurements. Note also that

120



the phase angle of the impedance ϕ(f) in Equation (7.2) was related to φ(f) by

ϕ(f) = φ(f)− 90◦ (not shown).

7.4.1.2 Predictions By PNP Model With Stern Layer

Figure 7.5 shows the differential capacitance CEIS
s retrieved from EIS [Equation

(7.3)] as a function of dimensionless frequency τmf ranging from 10−10 to 2×10−4

as well as the theoretical equilibrium differential Cdiff and integral Cs capacitances

[Equations (7.7) and (7.8)]. Results were obtained by solving the PNP model

accounting for a Stern layer of thickness H = a/2 = 0.33 nm. The electrolyte

concentration was set to be c∞ = 0.01 and 0.001 mol/L, ψdc = 0.1 V while

D = 2× 10−8, 2× 10−9, and 2× 10−10 m2/s.

The trend of the differential capacitance CEIS
s as a function of τmf was simi-

lar to the predictions of PNP model without Stern layer shown in Figure 7.2(b).

However, the critical dimensionless frequency τmf was larger and equal to 10−7

when accounting for the Stern layer. Note also that the equilibrium double layer

differential capacitance Cdiff was larger than the corresponding integral capaci-

tance Cs by 60%− 80% for different values of c∞ instead of 100% when the Stern

layer was not accounted for [Figure 7.2].

7.4.2 EIS in Concentrated Electrolyte Solutions

Figure 7.6 shows the numerically predicted differential capacitance CEIS
s retrieved

from EIS [Equation (7.3)] as a function of dimensionless frequency τmf ranging

from 10−9 to 2×10−2. The results were obtained by solving the MPNP model with

a Stern layer [Equations (7.4) and (7.5)] for H = a/2 = 0.33 nm, c∞ = 1 mol/L,

ψdc = 0.3 V, and three values of D = 2×10−8, 2×10−9, and 2×10−10 m2/s. Figure

7.6 also shows the corresponding theoretical equilibrium differential Cdiff and inte-

gral Cs capacitances [Equations (7.7) and (7.8)]. Here, the Stern layer and diffuse
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Figure 7.5: Predicted differential capacitance CEIS
s determined from EIS [Equa-

tion (7.3)] as a function of dimensionless frequency τmf . Results were obtained

by numerically solving the classical PNP model with Stern layer along with the

theoretical differential Cdiff and integral Cs capacitances [Equations (7.7) and

(7.8)] with c∞ = 0.01 and 0.001 mol/L, H = a/2 = 0.33 nm, ψdc = 0.1 V, and

D = 2× 10−8, 2× 10−9, and 2× 10−10 m2/s.

layer integral capacitances predicted by Equation (7.6) were CSt
s = 210.6 µF/cm2

and CD
s = 186.1 µF/cm2, respectively, resulting in Cs = 98.8 µF/cm2. Figure 7.6

indicates that the differential capacitance CEIS
s for c∞ = 1 mol/L was constant

and was identical to the theoretical value [Equation (7.8)] for dimensionless fre-

quency τmf less than 36.4 × 10−4 corresponding to f = 4 × 107 Hz. This value

should be compared with τmf = 10−7 for electrolyte concentrations c∞ = 0.01 and

0.001 mol/L (Figure 7.5). The difference can be attributed to the fact that the

electrolyte resistance to ionic current decreases significantly as the electrolyte con-

centration increases and ion transport to and away from the electrode becomes
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limiting only at very large frequencies. Thus, at high concentrations, ions can

respond nearly instantaneously to the rapid variation in electric potential ψs(t).

Figure 7.6 also demonstrates that the differential capacitance decreased sharply

for dimensionless frequency τmf larger than 6.4× 10−4. It is expected to decrease

at much smaller frequencies when simulating the electrode and accounting for its

electrical resistance. This was observed in the capacitance versus scan rate curves

retrieved in the simulations of cyclic voltammetry in EDLCs [149]. Overall, the

characteristic time τm given by Equation (7.10) is the proper characteristic time

scale for low and high concentrations using PNP or MPNP model with or without

Stern layer. Finally, Figure 7.6 indicates that equilibrium differential double layer

capacitance was smaller than the corresponding integral capacitance by about

20% for c∞ = 1 mol/L and ψdc = 0.3 V.

7.4.3 Relative Difference Between Differential and Integral Capaci-

tances

The previous sections established that the double layer differential capacitance

was larger than its integral capacitance under low electrolyte concentration (Fig-

ures 7.2 and 7.5) while it was smaller than the integral capacitance under large

electrolyte concentration and electric potential (Figure 7.6).

In order to quantify the relative difference between the double layer differential

and integral capacitances, the relative error was defined as δ =
∣∣(CEIS

s − Cs)/Cs

∣∣
where Cs is the total double layer integral capacitance [Equation (7.7)] and CEIS

s is

the differential capacitance retrieved by EIS using Equation (7.3) at low frequency

in the diffusion-independent regime.

Figure 7.7 shows the computed relative error δ as a function of DC potential

ψdc ranging from 0.01 to 0.5 V. Predictions of CEIS
s for ψdc ≤ 0.1 V and c∞ = 0.01

mol/L were obtained by numerically solving the PNP model with or without a
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Figure 7.6: Predicted differential capacitance CEIS
s determined from EIS [Equa-

tion (7.3)] as a function of dimensionless frequency τmf . Results were obtained

by numerically solving the MPNP model with Stern layer along with the theoreti-

cal equilibrium differential Cdiff and integral Cs capacitance [Equations (7.7) and

(7.8)] with H = a/2 = 0.33 nm, c∞ = 1 mol/L, ψdc = 0.3 V, and D = 2 × 10−8,

2× 10−9, and 2× 10−10 m2/s.

Stern layer for frequency f = 10 Hz. Predictions of CEIS
s for ψdc > 0.1 V and

c∞ = 1 mol/L were obtained by solving the MPNP model with a Stern layer

for frequency f = 103 Hz. It is evident that the relative error increased with

increasing DC potential for any model considered. For cases with low DC potential

and low concentration based on the PNP model, the relative error was smaller

when accounting for the Stern layer. However, it grows rapidly from less than 5%

for ψdc = 0.01 V to more than 60% for ψdc = 0.1 V. For concentration c∞ = 1

mol/L and ψdc > 0.1 V, which are typical of EDLCs, the double layer differential

capacitance was smaller than the integral capacitance. In fact, the relative error

increased from 0.2% to 45% as the DC potential increased from 0.05 to 0.5 V.
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Figure 7.7: Relative error between equilibrium double layer differential capaci-

tance CEIS
s and integral capacitance Cs as a function of DC potential obtained by

solving (i) the classical PNP model with or without a Stern layer for c∞ = 0.01

mol/L and (ii) the MPNP model with the Stern layer for c∞ = 1 mol/L with

H = a/2 = 0.33 nm and D = 2× 10−9 m2/s.

Overall, Figure 7.7 indicates that the double layer differential capacitance dif-

fered from the integral capacitance unless at very low DC potential. Note that the

electric potential window is typically larger than 1 V for actual EDLCs. Therefore,

the differential and integral capacitances should be discriminated when comparing

the EDLC capacitances measured using EIS, CV, and galvanostatic techniques.

We expect that the confusion between Cdiff and Cint could explain some of the

reported discrepancies between EIS and CV or galvanostatic charge/discharge

measurements of the capacitances of supercapacitors [43,78,79,285,286,293,294].
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7.5 Conclusions

This chapter presented numerical simulations of electrochemical impedance spec-

troscopy measurements for determining the electric double layer capacitance near

a planar electrode in aqueous electrolyte solutions. The double layer dynamics

was simulated using (i) the PNP model with or without Stern layer for low elec-

trolyte concentrations and electric potential, and (ii) the MPNP model with a

Stern layer for large electrolyte concentration and electric potential.

For a given value of electrolyte concentration c∞, the predicted CEIS
s and

impedance phase shift φ plotted versus τmf for various values of ion diffusion

coefficient overlapped on a single line for all models considered. Here, the ion

diffusion characteristic time was defined as τm = λ2m/D using the Debye length

λm = (ϵ0ϵrkBT/2e
2z2NAcm)

1/2 based on the maximum ion concentration cm. The

electric double layer capacitance was found to be constant for dimensionless fre-

quency τmf less than a critical value depending on the electrolyte concentration.

However, electric double layers featured an intrinsic “capacitance dispersion” at

high frequencies. This was attributed to the fact that ion transport could not

follow the fast variation in electric potential.

The double layer differential capacitance differed significantly from its integral

capacitance for DC potential larger than 0.5 V, typical of potential window in

practical EDLCs. Therefore, the differential and integral capacitances should

always be explicitly discriminated when reporting the capacitances of EDLCs

measured using different techniques.
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CHAPTER 8

Physical Interpretation of Cyclic Voltammetry

for EDLCs

The previous chapter reported physical modeling and simulations of electrochem-

ical impedance spectroscopy for measuring the differential capacitance of EDLCs.

Cyclic voltammetry is another experimental technique widely used to character-

ize the performance of supercapacitors. The chapter presents physical modeling

and interpretation of cyclic voltammetry for measuring the integral capacitance

of EDLCs.

8.1 Introduction

Cyclic voltammetry (CV) is a powerful tool in the field of electrochemistry [9,

331]. It has been used extensively to characterize the performance of various

electrical energy storage devices such as electrochemical capacitors (also known

as supercapacitors) [10, 31, 40], batteries [332, 333], and fuel cells [334, 335]. In

these applications, the charged electrodes are typically immersed in the electrolyte

solution. Electric double layers form at the electrode/electrolyte interfaces which

are accessible to ions present in the electrolyte. Figure 8.1 shows a schematic

of the electric double layer structure consisting of the Stern and diffuse layers

forming near the surface of a positively charged electrode. Figure 8.1b shows

the electric circuit representation of an electric double layer capacitance including

the electrode resistance, the Stern layer and diffuse layer capacitances in series

[8–10,36].
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Figure 8.1: Schematic of (a) the electric double layer structure showing the ar-

rangement of solvated anions and cations near an electrode/electrolyte interface

and the simulated computational domain consisting of a Stern layer and the dif-

fuse layer and (b) the electrode resistance along with the Stern and diffuse layer

capacitances in series [8–10].

CV measurements consist of imposing an electric potential at the electrodes

which varies periodically and linearly with time [9, 331]. The resulting electric

current is recorded. The total charge accumulated at the electrode surface can

be found by integrating the electric current with respect to time [10, 75, 120, 266,

336]. Then, the capacitance can be estimated as the total charge divided by the

“potential window” [10, 75, 266, 336, 337]. Capacitance is typically measured at

different scan rates to characterize the performance of energy storage devices such

as electric double layer capacitors (EDLCs). The capacitance measured at low

scan rates is maximum and close to the capacitance under equilibrium conditions.

Moreover, the shape of CV curves has been used extensively to deduce the

electrochemical processes involved in the charging and discharging of EDLCs
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[39, 209, 338–340]. For example, the current initially increases when charging

EDLCs from zero potential. Then, it decreases upon further increase in the elec-

tric potential. Thus, a “hump” is typically observed in the CV curves. Different

interpretations have been proposed in the literature to explain this observation.

For example, Pell et al. [341] investigated the effect of the electrolyte concentra-

tion on the charging/discharging of EDLCs. The electrode was carbon foil formed

using carbon powders while the electrolyte was tetraethylammonium tetrafluorob-

orate (TEATFB) in propylene carbonate with concentration ranging from 0.08 to

1 mol/L. The authors observed a hump in CV curves at low electrolyte concen-

tration of 0.08 mol/L which was absent at larger ones. Consequently, the authors

attributed its reason to the “electrolyte starvation” due to limited amount of ions

at low concentrations. The same interpretation was suggested for EDLCs with

both aqueous (H2SO4) and organic (TEABF4) electrolytes with 1 mol/L concen-

tration [342]. Moreover, the hump was also attributed to redox reactions at the

electrode surface [40,295,343–351] as well as the “difference of diffusion capability

between solvated anions and cations in the electrolyte” [349]. Recently, Mysyk

et al. [352,353] experimentally investigated this effect for EDLCs with electrodes

made of pitch-derived and viscose-based carbons in both aqueous and organic

electrolytes. The authors systematically measured the CV curves for these carbon

electrodes featuring different specific surface area and pore size. They observed

the hump for carbon electrodes with small pore size in electrolytes with large

ion size. Thus, they speculated that the “available active surface becomes fully

saturated with ions” before reaching the maximum potential. Then, the current

began to decrease even as the potential further increased. However, there is still

no clear and definitive explanations to this observed phenomenon. In addition, to

the best of our knowledge, no studies have attempted to elucidate this question

using physics-based numerical simulations.

This chapter aims to develop a model for simulating electric double layer ca-
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pacitors by accounting for transport phenomena in both the electrode and the

electrolyte under large potential and with concentrated electrolyte solutions. It

also aims to provide physical interpretations of CV measurements used to deter-

mine electric double layer capacitance.

8.2 Background

8.2.1 Cyclic Voltammetry

In CV measurements, the surface potential ψs is imposed to vary periodically and

linearly with time t as,

ψs(t) ={
ψmax − v[t− 2(m− 1)τCV ] for 2(m− 1)τCV ≤ t < (2m− 1)τCV (8.1a)

ψmin + v[t− (2m− 1)τCV ] for (2m− 1)τCV ≤ t < 2mτCV (8.1b)

where v is the scan rate in V/s, m(= 1, 2, 3, ...) is the cycle number, and τCV =

(ψmax−ψmin)/v is half the cycle period. The latter represents the time for varying

the surface potential from its maximum ψmax to its minimum ψmin values or versa

vice. Here, ψmax − ψmin is referred to as the “potential window”. Note that

the measurements are referred to as “linear sweep voltammetry” when ψs(t) =

ψmin + vt or ψs(t) = ψmax − vt.

The results of CV measurements are typically plotted in terms of current or

current density versus surface potential, referred to as “CV curves”. The surface

charge density qs accumulated at the electrode surface during one cycle can be

estimated by computing the area enclosed by the CV curves [10,75,149,266,336,

337]. Then, the areal integral capacitance Cs (in F/m2) can be computed from

CV measurements as [10, 75,149,266,336,337],

Cs =
qs

ψmax − ψmin

=
1

ψmax − ψmin

∮
js
2v
dψs (8.2)

where js is the surface current density (in A/m2).
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8.2.2 Numerical Simulations of Cyclic Voltammetry

Numerous studies have simulated CV measurements of electric double layers.

These simulations were based on either equivalent RC circuit models [120, 121,

123, 126] or the classical Poisson-Nernst-Planck (PNP) model assuming point-

charges [331, 354–356]. However, these models suffer from severe limitations and

thus invalid for practical EDLCs as discussed in Chapter 2. Moreover, the ef-

fects of electrodes were typically neglected in simulating CV measurements using

the PNP model [331, 354, 355]. However, studies have demonstrated that the

electrode electrical conductivity significantly affected the charging performance of

EDLCs [32,34,357–359].

Efforts have been made in recent literature to account for the effect of finite

ion size in modeling ion transport in concentrated electrolyte solutions under large

electric potential [95, 130, 146]. For example, Kilic et al. [146] derived a modified

Poisson-Nernst-Planck (MPNP) model valid for binary and symmetric electrolytes

under large electrolyte concentration and electric potential as discussed in Chapter

2. However, to the best of our knowledge, no studies have simulated CV measure-

ments for electric double layers under large electrolyte concentrations and electric

potential other than by using RC circuit models [120, 121, 123, 126, 331, 354, 355].

Given the limitations of the latter, it is important to develop a model that can sim-

ulate CV measurements under practical conditions and account for the presence

of the electrode in simulating the charging/discharging of EDLCs. This model

will be useful to identify the important parameters affecting the performance of

EDLCs and to elucidate the electrochemical processes involved.

This chapter aims to develop a model for simulating the electric double layer

dynamics in CV measurements while simultaneously accounting for transport phe-

nomena in both the electrode and the electrolyte. It also aims (i) to identify

the dimensionless parameters that govern the CV measurements, (ii) to provide a
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physical interpretation of the shape of CV curves, and (iii) to investigate the effect

of the electrode electrical conductivity on the predicted double layer capacitance.

The dynamics of the electric double layer forming near a planar electrode in aque-

ous electrolyte solutions during CV measurements was simulated as a function of

scan rate. A MPNP model with a Stern layer [95,130,146] was used while simulta-

neously accounting for the electrode. The results were compared with analytical

expressions for the capacitances under equilibrium conditions.

8.3 Analysis

8.3.1 Schematics and Assumptions

Figure 8.1 shows the schematic of the computational domain used to simulate a

planar electrode of thickness Ls immersed in an electrolyte solution. The region

of electrolyte solution consists of two layers corresponding to (1) a Stern layer of

thickness H near the electrode surface and (2) a diffuse layer beyond. A time-

dependent electric potential ψs(t) was prescribed at the electrode surface (x =

−Ls) and was zero far away from the electrode surface (x = L). The electrode

thickness Ls and the length of the electrolyte domain were specified to be Ls = 0

or 100 nm and L = 80 nm, respectively. Here, the length L corresponded to half

of the distance between the anode and the cathode. For binary and symmetric

electrolytes, both the electric potential and the electrolyte concentration remained

unchanged at the middle plane (x = L) when L was much larger than the double

layer thickness [128, 291, 316, 360]. Thus, it sufficed to simulate only half of the

domain by imposing zero electric potential and bulk electrolyte concentration c∞

at x = L. In addition, the electric double layer thickness decreases with increasing

electrolyte concentration [8,9,35,36,95,146]. Increasing the value of L by a factor

of two was found to have no effect (i) on the predicted specific capacitance under

equilibrium conditions and (ii) on the capacitance Cs and jC versus ψs curves
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retrieved from CV simulations at low scan rates defined by Equations (8.2) and

(8.17), respectively. However, the values of Cs predicted at large scan rates were

found to decrease with increasing L. In addition, the jC versus ψs curves predicted

at large scan rates became more asymmetric as L increased as discussed in Section

8.4.4. These can be attributed to the fact that the charge storage took longer as it

could not follow the fast variation in the electric potential under large scan rates

when the electrolyte domain length L increased [128,149,360].

To make the problem mathematically tractable, the following assumptions

were made: (1) anions and cations had the same effective diameter and diffusion

coefficient which were assumed to be constant and independent of electrolyte con-

centration [95, 146, 200], (2) the electrolyte dielectric permittivity was constant

and equals to that of water, (3) isothermal conditions prevailed throughout the

electrode and electrolyte, (4) advection of the electrolyte was assumed to be neg-

ligible, (5) the ions could only accumulate at the electrode surface and could not

diffuse into the electrode, i.e., there was no ion insertion, and (6) the specific ion

adsorption due to non-electrostatic forces were assumed to be negligible.

8.3.2 Mathematical Formulation

The local electric potential ψ(x, t) in the electrode was governed by the Poisson

equation expressed as [361–365],

∂

∂x

(
σs
∂ψ

∂x

)
= 0 for − Ls ≤ x < 0 (8.3)

where σs is the electrical conductivity of the electrode material expressed in S/m.

Moreover, the local electric potential ψ(x, t) and ion concentrations ci(x, t) at time

t and location x in the electrolyte solution were computed by solving the MPNP

model with a Stern layer for large electrolyte concentration [95,130,146,149]. For

binary and symmetric electrolytes, the valency is such that z1 = −z2 = z and the

bulk ion concentration is given by c1∞ = c2∞ = c∞. Then, assuming identical
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diffusion coefficient D1 = D2 = D, the MPNP model with Stern layer can be

written as [95,130,146,149],

∂

∂x

(
ϵ0ϵr

∂ψ

∂x

)
=

{
0 for 0 ≤ x < H (8.4a)

−eNAz(c1 − c2) for H ≤ x ≤ L (8.4b)

∂ci
∂t

=
∂

∂x

(
D
∂ci
∂x

+
ziD

RuT
Fci

∂ψ

∂x
+

νpDci
2c∞ − νp(c1 + c2)

∂(c1 + c2)

∂x

)
for H ≤ x ≤ L (8.4c)

where ci(x, t) is the local molar concentration of ion species “i” (i = 1, 2) while

ϵ0 and ϵr are the free space permittivity (ϵ0 = 8.854×10−12 F/m) and the relative

permittivity of the electrolyte solution, respectively. The absolute temperature

is denoted by T , e is the elementary charge (e = 1.602 × 10−19 C), NA is the

Avogadro’s number (NA = 6.022 × 1023 mol−1) while F and Ru are the Fara-

day constant (F = eNA sA/mol) and the universal gas constant (Ru = 8.314

JK−1mol−1), respectively. The packing parameter is defined as νp = 2a3NAc∞

where a is the effective ion diameter. It represents the ratio of the total bulk

ion concentration to the maximum ion concentration cmax = 1/NAa
3 assuming a

simple cubic ion packing [4,95,130]. Therefore, νp should not be larger than unity

for the model to be physically acceptable [4,95,130]. Equations (8.4b) and (8.4c)

reduce to the classical Poisson-Nernst-Planck model when νp = 0 [95, 130, 146].

Note that in Refs. [95,130,146], the Stern layer was accounted for via a boundary

condition relating the potential drop across the Stern layer and the potential gra-

dient at the Stern/diffuse layer interface. Here, the electric potential in the Stern

layer was solved explicitly. In fact, these two approaches are equivalent for planar

electrodes [130,146,149,228].

Moreover, the surface electric potential ψs(t) expressed by Equation (8.1) was

imposed, i.e.,

ψ = ψs(t), at x = −Ls (8.5a)
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The electric potential and current density were continuous across the electrode/electrolyte

interface located at x = 0 nm so that [366],

ψ
∣∣
x=0−

= ψ
∣∣
x=0+

and − σs
∂ψ

∂x

∣∣∣∣
x=0−

= −ϵ0ϵr
∂2ψ

∂x∂t

∣∣∣∣
x=0+

(8.5b)

Similarly, the electric potential and displacement were continuous across the Stern/diffuse

layer interface located at x = H [8, 90,149],

ψ
∣∣
x=H− = ψ

∣∣
x=H+ and ϵ0ϵr

dψ

dx

∣∣∣∣
x=H−

= ϵ0ϵr
dψ

dx

∣∣∣∣
x=H+

(8.5c)

In addition, the mass flux vanishes for both ion species at the electrode surface

since there is no ion insertion [assumption (6)] so that [95, 130,146,149],

D
∂ci
∂x

+
ziD

RuT
Fci

∂ψ

∂x
+

νpDci
2c∞ − νp(c1 + c2)

∂(c1 + c2)

∂x
= 0, at x = H (8.5d)

Far away from the electrode surface, the electric potential and ion concentration

are such that,

ψ(x = L, t) = 0 and ci(x = L, t) = c∞ (8.5e)

Finally, the initial condition are given by,

ψ(−Ls ≤ x ≤ L, t = 0) = 0 and ci(0 ≤ x ≤ L, t = 0) = c∞ (8.5f)

Note that, when Ls = 0 nm, Equations (8.3) to (8.5) correspond to simulations

without accounting for the presence of the electrode.

8.3.3 Dimensional Analysis

The following scaling parameters were introduced to make the formulation dimen-

sionless,

x∗ =
x

λD
, t∗ =

tD

λ2D
, ψ∗ =

ψ

RuT/zF
, and c∗i =

ci
c∞

(8.6)

Then, the governing Equations (8.3) to (8.5) were transformed into dimensionless

form as,

∂2ψ∗

∂x∗2
= 0 for − Ls/λD ≤ x∗ < 0 (8.7a)

135



∂2ψ∗

∂x∗2
=


0 for 0 ≤ x∗ < H/λD = a/2λD (8.7b)

−1

2
(c∗1 − c∗2) for a/2λD = H/λD ≤ x∗ ≤ L/λD (8.7c)

∂c∗i
∂t∗

=
∂

∂x∗

(
∂c∗i
∂x∗

+ sgn(zi)ci
∂ψ∗

∂x∗
+

νpc
∗
i

2− νp(c∗1 + c∗2)

∂(c∗1 + c∗2)

∂x∗

)
for a/2λD = H/λD ≤ x∗ ≤ L/λD (8.7d)

where the packing parameter is defined as νp = 2c∞/(1/a
3NA). It represents

the ratio of the total bulk ion concentration to the maximum ion concentration

1/a3NA assuming a simple cubic packing of ions of diameter a.

The dimensionless potential ψ∗
s(t

∗) imposed at the electrode surface in CV

measurements is given by,

ψ∗
s(t

∗) ={
ψ∗
max − v∗[t∗ − 2(m− 1)τ ∗CV ] for 2(m− 1)τ ∗CV ≤ t∗ ≤ (2m− 1)τ ∗CV (8.8a)

ψ∗
min + v∗[t∗ − (2m− 1)τ ∗CV ] for (2m− 1)τ ∗CV ≤ t∗ ≤ 2mτ ∗CV (8.8b)

where τ ∗CV = (ψ∗
max −ψ∗

min)/v
∗ represents the dimensionless half cycle period and

v∗ = (λ2D/D)/[(RuT/zF )/v] is the dimensionless scan rate. It can be interpreted

as the ratio of the ion diffusion time scale (λ2D/D1) and the characteristic time

for reaching the thermal potential RuT/zF at scan rate v. Moreover, ψ∗
max =

ψmax/(RuT/zF ) and ψ∗
min = ψmin/(RuT/zF ) are the maximum and minimum

surface potentials, respectively, scaled by the thermal potential. They can be

also interpreted as the ratio of characteristic times to reach ψmax or ψmin and the

characteristic time for reaching the thermal potential at scan rate v.

The boundary conditions at the electrode/electrolyte interface located at L∗ =

L/λD can be written in dimensionless form as,

ψ∗∣∣
x∗=0−

= ψ∗∣∣
x∗=0+

and
σ∗
s

ψ∗
max − ψ∗

min

L∗
s

L∗
∂ψ∗

∂x∗

∣∣∣∣
x∗=0−

=
∂2ψ∗

∂x∗∂t∗

∣∣∣∣
x∗=0+

(8.9)

where L∗
s = Ls/λD and L∗ = L/λD are the electrode thickness and inter-electrode

distance, respectively, scaled by the Debye length representing an estimate of the

double layer thickness.
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Similarly, the boundary conditions at the Stern/diffuse layer interface located

at x∗ = a∗/2 became in dimensionless form as,

ψ∗∣∣
x∗=(a∗/2)−

= ψ∗∣∣
x∗=(a∗/2)+

,
dψ∗

dx∗

∣∣∣∣
x∗=(a∗/2)−

=
dψ∗

dx∗

∣∣∣∣
x∗=(a∗/2)+

, and (8.10)

∂c∗i
∂x∗

+ sgn(zi)ci
∂ψ∗

∂x∗
+

νpc
∗
i

2− νp(c∗1 + c∗2)

∂(c∗1 + c∗2)

∂x∗
= 0, at x∗ = a∗/2 (8.11)

where a∗ = a/λD is the effective ion diameter scaled by the Debye length.

Finally, the dimensionless boundary conditions at x∗ = L∗ = L/λD and the

initial conditions for ψ∗ and c∗i became,

ψ∗(x∗ = L∗, t∗) = 0 and c∗i (x
∗ = L∗, t∗) = 1, (8.12)

ψ∗(−L∗
s ≤ x∗ ≤ L∗, t∗ = 0) = 0 and c∗i (0 ≤ x∗ ≤ L∗, t∗ = 0) = 1 (8.13)

Considering the dimensionless governing equations and associated boundary

and initial conditions, eight key dimensionless similarity parameters can be iden-

tified for binary and symmetric electrolytes. They are expressed as,

v∗ =
λ2D/D

(RuT/zF )/v
, ψ∗

max =
ψmax

RuT/zF
, ψ∗

min =
ψmin

RuT/zF
, L∗ =

L

λD
,

a∗ =
a

λD
, νp = 2a3NAc∞, σ∗

s =
σs(ψmax − ψmin)/Ls

Fzc∞D/L
, and L∗

s =
Ls

λD
(8.14)

8.3.4 Constitutive Relations

In order to solve Equations (8.4) and (8.5), the electrode conductivity σs and elec-

trolyte properties ϵr, z, c∞, a and D along with the temperature T and the surface

potential ψs(t) are needed. The electrical conductivity of activated carbons is on

the order of 10−6 to 102 S/m [357,358]. Here, the electrode electrical conductivity

was taken as σs = 10 or 0.01 S/m. The present study focuses on aqueous elec-

trolyte solution at room temperature so that T = 298 K with ϵr = 78.5 [253]. The

effective ion diameter and diffusion coefficient were taken as a = 0.66 nm [200] and

D = 2× 10−9 m2/s [253], respectively, while the valency was z = 1. These values
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correspond to solvated ions such as K+ and Cl− in aqueous solutions [200, 253].

The electrolyte concentration was chosen as c∞ = 1.0 mol/L corresponding to

typical values in actual EDLCs. In addition, the Stern layer thickness H was

approximated as the radius of solvated ions, i.e., H = a/2 = 0.33 nm [9, 35, 36].

Moreover, in the surface electric potential ψs(t) [Equation (8.1)], ψmax was varied

from 0.3 to 0.5 V while ψmin = 0.0 V. The case of ψmax = 0.5 V corresponds to

a typical potential difference of 1.0 V between the anode and the cathode typical

of aqueous EDLCs.

8.3.5 Method of Solution and Data Processing

The models were solved using the commercial finite element solver COMSOL 4.1.

The capacitance under equilibrium conditions and the capacitance retrieved from

CV simulations were computed as follows.

8.3.5.1 Capacitance Under Equilibrium Conditions

The capacitance under equilibrium conditions corresponds to the time-independent

surface potential, i.e., ψs(t) = ψmax. Then, the areal Stern and diffuse layer spe-

cific capacitances CSt
s and CD

s are defined by dividing the surface charge den-

sity [35, 202] qs(x) = ϵ0ϵrE(x) by their respective potential difference [9, 90, 228].

Here, E(x) = |−dψ/dx| is the norm of the local electric field. The areal capaci-

tances CSt
s and CD

s of planar electrodes assuming constant electrolyte properties

and accounting for the finite ion size are given by [4, 9, 90, 95,228],

CSt
s =

ϵ0ϵr
H

=
2ϵ0ϵr
a

(8.15a)

CD
s =

2zeNAc∞λD
ψD

√
2

νp
log

[
1 + 2νp sinh

2

(
zeψD

2kBT

)]
(8.15b)

where ψD = ψ(H) is the electric potential computed at the Stern layer/diffuse

layer interface x = H. Here, it was obtained by solving the steady-state equilib-
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rium modified Poisson-Boltzmann (MPB) model at surface potential ψdc and elec-

trolyte concentration c∞ [4, 95, 146, 228]. Then, the total specific capacitance Cs

under equilibrium conditions was calculated using the series formula as [9,90,228],

1

Cs

=
1

CSt
s

+
1

CD
s

(8.16)

Numerical convergence study was performed as discussed in Refs. [199,228]. The

maximum mesh size was specified to be 0.01 nm at the electrode surface and 1

nm in the rest of the domain.

8.3.5.2 Simulating CV Measurements

CV measurements were simulated by numerically imposing the periodic surface

electric potential given by Equation (8.1). The dimensionless governing equations

(8.4) were solved along with the boundary and initial conditions given by Equa-

tions (8.5). The corresponding transient surface capacitive current density was

estimated as [201,202,291,311,312,323–326],

jC(t) = −σs
∂ψ

∂x

∣∣∣∣
x=0−

= −ϵ0ϵr
∂2ψ

∂x∂t

∣∣∣∣
x=0+

and (8.17)

j∗C(t
∗) = − σ∗

s

ψ∗
max − ψ∗

min

L∗
s

L∗
∂ψ∗

∂x∗

∣∣∣∣
x∗=0−

= − ∂2ψ∗

∂x∗∂t∗

∣∣∣∣
x∗=0+

(8.18)

Simulations of CV measurements were run for at least 5 periods (i.e., t ≥ 10τCV ) to

ensure the current density had reached its stationary and periodic states. Then,

the areal capacitance Cs was computed using Equation (8.2). The numerical

convergence criterion was defined such that the maximum relative difference in

the retrieved value of Cs was less than 1% when (1) reducing the mesh size by a

factor five, (2) dividing the time step by five, and (3) running the CV simulations

for 5 more periods. The time step was imposed to be ∆t ≈ τCV /1000 = (ψmax −

ψmin)/1000v. Note that this time step decreased with increasing scan rate v and

was several orders of magnitude smaller than the characteristic time for diffusion

L2/D. In addition, further reduction in the time step below the Debye relaxation
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time λ2D/D was also found to have no effect on the predicted values of jC and

Cs. The mesh size was the smallest at the electrode surface due to large potential

gradient and then gradually increased. The maximum mesh size was specified to

be 0.001 nm at the electrode surface and 1 nm in the rest of the domain. The

total number of finite elements was less than 400 for all cases simulated in the

present study.

8.3.6 Validation

The numerical tool was validated based on three equilibrium and transient cases

reported in the literature. First, the equilibrium electric potential profile in the

diffuse layer predicted by solving the MPB model was validated against the exact

solution for planar electrodes [8, 35, 90] with ϵr = 78.5, c∞ = 0.01 and 0.001

mol/L, νp = 0, and ψD = 0.1 V. Second, the computed specific capacitances for

the Stern and diffuse layers obtained from the MPB model were validated against

Equations (8.15a) and (8.15b) for (i) ψs = 0.1 V, c∞ = 0.01 mol/L, and a = 0.66

nm as well as (ii) ψs = 0.5 V, c∞ = 1 mol/L, and a = 0.66 nm. Third, the

transient ion concentration and electric potential profiles predicted by solving the

PNP and MPNP models with constant surface potential were compared with the

numerical solutions for planar electrodes reported in Ref. [146]. Comparison was

made against the reported values of ci(x, t) and ψ(x, t) for a wide range of packing

parameter νp and dimensionless potential (zFψD/RuT ) [146]. Good agreement

was obtained between our results and reported values for all cases considered.

8.4 Results and Discussions

8.4.1 Dimensional Analysis

Figure 8.2 shows the predicted current density jC versus surface potential ψs (CV

curves) obtained from CV simulations for three cases featuring different values of
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T , L, a, c∞, D, v, ψmax, and ψmin as summarized in Table 8.1. However, the

dimensionless numbers for all cases were identical, namely, ψ∗
max = 19.47, ψ∗

min =

0, L∗ = 263.2, a∗ = 2.17, νp = 0.346, L∗
s = 0, and σ∗

s → ∞. Results were obtained

by numerically solving the MPNP model with a Stern layer [Equations (8.7) to

(8.13)] without electrode, i.e., Ls = 0 nm. Figure 8.2 shows that the predicted

jC − ψs curves were significantly different for these three cases. However, Figure

8.2 demonstrates that the dimensionless j∗C −ψ∗
s curves overlapped after using the

scaling parameters defined by Equation (8.6). Overall, these results demonstrate

that (i) the scaling parameters defined by Equations (8.6) and the dimensional

analysis for CV simulations were valid and (ii) the double layer charging dynamics

near planar electrodes in CV measurements was governed by eight dimensionless

numbers, i.e., v∗, ψ∗
max, ψ

∗
min, L

∗, a∗, νp, L
∗
s, and σ

∗
s given by Equation (8.14).
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Figure 8.2: Predicted (a) jC versus ψs curves and (b) j∗C versus ψ∗
s curves from CV

simulations for three cases with parameters given in Table 8.1. Results were ob-

tained by numerically solving the MPNP model with a Stern layer [Equations (8.7)

to (8.13)] without accounting for the electrode (Ls = 0 nm) with ψ∗
max = 19.47,

ψ∗
min = 0, L∗ = 263.2, a∗ = 2.17, νp = 0.346, L∗

s = 0, and σ∗
s → ∞.
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8.4.2 Effect of Scan Rate

Figures 8.3a and 8.3b show the numerically predicted j∗C versus ψ∗
s curves from

CV simulations for dimensionless scan rate v∗ ranging from 1.8× 10−4 to 18. The

results were obtained by solving the MPNP model with a Stern layer [Equations

(8.7) to (8.13)] without the electrode (Ls = 0 nm). The dimensionless numbers

were ψ∗
max = 19.47, ψ∗

min = 0, L∗ = 263.2, a∗ = 2.17, νp = 0.346, L∗
s = 0, and

σ∗
s → ∞. Figures 8.3a and 8.3b demonstrate that the magnitude of the current

density j∗C increased significantly with increasing dimensionless scan rate v∗. This

can be attributed to the fact that a fast change in the surface potential resulted in

a large local electric field and thus a large current density according to Equation

(8.17). In addition, a “hump” was observed in the j∗C versus ψ∗
s curve for v∗ =

1.8× 10−2 shown in Figure 8.3a. The hump disappeared when further increasing

v∗ and the j∗C versus ψ∗
s curve became “leaf-like” for v∗ = 1.8× 10−1 as shown in

Figure 8.3b. This is typical of EDLCs at large scan rates corresponding to large

resistance to ionic current [31,40,347,351,367]. These trends are similar to those

experimentally observed for EDLCs made of porous carbons [31,40,347,351,367].

Moreover, the predicted j∗C became nearly linearly proportional to the imposed

surface potential v∗ for v∗ > 1.8. In these cases, the electric double layer behaved

as a pure resistor [40].

Figure 8.4 shows the slope of the jC versus ψs curves as a function of dimen-

sionless scan rate v∗ ranging from 0.18 to 18. The model and other parameters

were identical to those used to produce Figure 8.4.2. It is evident that the slope of

jC versus ψs curves increased with increasing v∗ and gradually reached a constant

plateau for v∗ ≥ 1.8. It is interesting to note that this plateau corresponds to

the conductance of an electrolyte solution with ionic conductivity σ (in S/m) and

thickness L given by [132,311,322,324],

S =
σ

L
=

1

L

F 2

RuT

2∑
i=1

z2iDici∞ (8.19)
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Figure 8.3: Predicted j∗C versus ψ∗
s curves from CV simulations for dimensionless

scan rate ranging from (a) v∗ = 1.8 × 10−4 − 1.8 × 10−2 and (b) v∗ = 0.18 − 18.

Results were obtained by numerically solving the MPNP model with a Stern layer

[Equations (8.7) to (8.13)] without accounting for the electrode (Ls = 0 nm) with

ψ∗
max = 19.47, ψ∗

min = 0, L∗ = 263.2, a∗ = 2.17, νp = 0.346, L∗
s = 0, and σ∗

s → ∞.
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This result confirms that the predicted electrolyte ionic conductivity was indeed

equal to the theoretical value when ignoring the electrode contribution to the

resistance.
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Figure 8.4: Slope of the predicted jC versus ψs curves from CV simulations as

a function of dimensionless scan rate v∗. Results were obtained by numerically

solving the MPNP model with a Stern layer [Equations (8.7) to (8.13)] without ac-

counting for the electrode (Ls = 0 nm) with ψ∗
max = 19.47, ψ∗

min = 0, L∗ = 263.2,

a∗ = 2.17, νp = 0.346, L∗
s = 0, and σ∗

s → ∞. The theoretical value of σ/L given

by Equation (8.19) was also shown for comparison purposes.

8.4.3 Effect of Diffusion Coefficient

Figure 8.5(a) shows the specific capacitance Cs retrieved from CV simulations

using Equation (2.3) as a function of scan rate v ranging from 102 to 109 V/s.

Three values of ion diffusion coefficient were used, i.e., D = 2 × 10−10, 2 × 10−9,

or 2 × 10−8 m2/s. The model and other parameters were identical to those used
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in Case 1 and summarized in Table 8.1. Figure 8.5(a) demonstrates that Cs was

constant and independent of diffusion coefficient D for scan rate v smaller than a

critical value and decreased rapidly beyond. This critical scan rate increased with

increasing ion diffusion coefficient. For scan rates larger than a critical value, ion

diffusion becomes a limiting factor in charge storage. Note that the scan rate v

in CV measurements on mesoporous EDLCs typically ranged from 10−3 to 200

V/s [31, 347, 351, 367]. The scan rate for planar electrodes considered here was

larger due to the small electrical resistance compared with that of mesoporous

electrodes.

Figure 8.5(b) shows the specific capacitance Cs shown in Figure 8.5(a) but

plotted as a function of dimensionless scan rate v∗. It is evident that all the

curves now collapsed on a single line for the three different values of diffusion

coefficient. Moreover, two regimes can be identified in Figure 8.5(b). First, for

v∗ < 2× 10−4, ion transport is fast enough to follow the variation in the electric

potential ψs(t) and the retrieved specific capacitance Cs is independent of scan rate

and ion diffusion. In these cases, Cs was equal to Cs = 87.5 µF/cm2. This value

was identical to the specific capacitance under equilibrium conditions predicted

by Equations (8.15) and (8.16). Second, for v∗ > 2 × 10−4, ion diffusion was

the limiting phenomenon for charge storage and Cs decreased with increasing

scan rate. Note that similar behavior was also observed in simulating double

layer charging dynamics for electrochemical impedance spectroscopy (EIS) in our

previous study [148]. However, unlike CV simulations, the capacitance retrieved

from EIS predictions did not match the capacitance under equilibrium conditions

even at small frequencies [148]. This suggests that CV measurements should be

preferred to EIS when measuring the capacitance of EDLCs.
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Figure 8.5: Predicted specific capacitance Cs from CV simulations as a function

of (a) scan rate v and (b) dimensionless scan rate Π3. Results were obtained

by numerically solving the MPNP model with a Stern layer [Equations (8.7) to

(8.13)] without accounting for the electrode (Ls = 0 nm). The diffusion coefficient

D was chosen as D = 2× 10−10 to 2 × 10−8 m2/s while ψ∗
max = 19.47, ψ∗

min = 0,

L∗ = 263.2, a∗ = 2.17, νp = 0.346, L∗
s = 0, and σ∗

s → ∞.
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8.4.4 Interpretation of The Hump in CV Curves

Figure 8.6a shows the predicted jC versus ψs curves from CV simulations for

three values of potential window, i.e., ∆ψ = 0.3, 0.4, and 0.5 V. Results were

obtained by solving the MPNP model with a Stern layer [Equations (8.7) to (8.13)]

without the electrode (Ls = 0 nm). Other parameters were identical to those used

to reproduce the results shown in Figure 8.3. It is evident that jC reached the

maximum value at about ψs = 0.2 V for all three curves and then decreased for

larger surface potential. Thus, a hump was observed around ψs = 0.2 V typical

of experimental cyclic voltammetry measurements [40,345–348,352].

Here, the hump was not due to “electrolyte starvation” as suggested in Ref.

[341] since the electrolyte concentration was large, i.e. c∞ = 1 mol/L. More-

over, redox reactions were not responsible for the observed hump, as suggested in

Refs. [295,343–351], since only electrostatic phenomenon was accounted for in the

present study. Finally, we simulated symmetric electrolytes with identical ion di-

ameter and diffusion coefficient for both cations and anions. Thus, the hump was

not due to “difference of diffusion capability between solvated anions and cations

in the electrolyte” as proposed in Ref. [349].

To physically interpret the observed hump in jC versus ψs curves, Figure 8.6b

shows the corresponding anion concentration c2 at the electrode surface x = 0

nm as a function of surface potential for the same cases considered in Figure

8.6a. The maximum ion concentration cmax = 1/NAa
3 due to finite ion size (Sec-

tion 9.3.3) was also plotted in Figure 8.6b. It is evident that the surface anion

concentration c2 increased rapidly with increasing potential up to ψs = 0.2 V.

This regime corresponded to the increase of current density jC shown in Figure

8.6a where it reached a maximum at ψs = 0.2 V corresponding to the crest of

the hump. For ψs > 0.2 V, the anion concentration asymptotically approached

its maximum value cmax. Then, the ion accumulation near the electrode surface
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Figure 8.6: Predict (a) jC versus ψs and (b) c2(x = 0) versus ψs curves determined

from CV simulations for three values of potential window, i.e., ψmax−ψmin = 0.3,

0.4, and 0.5 V. Results were obtained by numerically solving the MPNP model

with a Stern layer [Equations (8.4) and (8.5)] without accounting for the electrode

(Ls = 0 nm) for v = 107 V/s, D = 2× 10−9 m2/s, and c∞ = 1 mol/L.
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became slower as the electric potential increased. This, in turn, resulted in the

decrease in the current density jC (Figure 8.6a). Overall, these results demon-

strate that the hump observed experimentally in CV curves for EDLCs can be

attributed to the saturation of ion concentration at the electrode surface. These

results and interpretation appear to support those proposed in Refs. [352, 353]

based on experimental results for large electrolyte concentrations. In addition, a

hump was also observed in the predicted jC versus ψs curves for small electrolyte

concentration c∞ = 0.05 or 0.1 mol/L (not shown) but at much smaller scan rates

than those for larger concentrations. Then, for mesoporous electrodes, the hump

observed under small electrolyte concentrations could be also attributed to the

saturation of ion concentration in addition to “electrolyte starvation”. However,

the morphology of mesoporous electrodes can significantly affect the charging and

discharging of EDLCs [31, 39, 209, 338–340]. Therefore, more detailed and sys-

tematic simulations accounting for three-dimensional electrode morphology with

nanosize pores are essential to further understand the charging performance of

mesoporous EDLCs.

Finally, Figure 8.7(a) shows the jC versus ψs curves predicted for three different

values of ion diffusion coefficient, i.e., D = 2× 10−9, 2× 10−8, or 2× 10−7 m2/s.

The potential window was ∆ψ = 0.5 V. The model and other parameters were

identical to those used to generate Figures 8.4.4 and 8.4.4. Figure 8.7(a) shows

that the hump was observed in the jC versus ψs curve for small diffusion coefficient

D = 2 × 10−9 m2/s. However, the hump disappeared when increasing the ion

diffusion coefficient to D = 2×10−8 and 2×10−7 m2/s. In addition, the jC versus

ψs curves became nearly symmetric along the line of zero current density jC = 0

A/m2. It is interesting to note that Lin et al. [209, 340] observed a similar trend

for EDLCs made of TiC-derived carbons with pore diameter ranging from 0.68

to 1.0 nm in organic electrolytes. The authors attributed the symmetry of CV

curves to the reduction in “steric hindering” of ions in large pores, i.e., smaller
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electrolyte ionic resistance [209,340]. Here, the symmetry in the CV curves can be

attributed to the fact that the ion transport can respond nearly instantaneously

to the variation in electric potential for large ion diffusion coefficient. This, in

turn, leads to smaller ionic resistance according to Equation (8.19).

To justify this interpretation, Figure 8.7(b) shows the the corresponding tran-

sient surface charge density qs(t) = ϵ0ϵrEs(t) as a function of dimensionless time

t/2t0. It also shows the imposed surface potential ψs(t). It is evident that the sur-

face charge density qs(t) responded nearly instantaneously to the surface potential

ψs(t) for large diffusion coefficient D = 2×10−8 and 2×10−7 m2/s. However, there

was a lag between qs(t) and ψs(t) for small ion diffusion coefficient D = 2× 10−9

m2/s. This confirms that the ion transport was unable to follow the fast variation

of surface potential for small diffusion coefficients. In practice, EDLC electrodes

are made of mesoporous materials. Then, a large effective ion diffusion coefficient

would be beneficial for improving the charging performance and power density

of EDLCs. Note that decreasing the electrolyte thickness L was found to have

the same effect on the predicted jC versus ψs curves (Figure 8.7(a)) and on qs

versus t/2t0 curves (Figure 8.7(b)) as proportionally increasing the ion diffusion

coefficient (not shown).

8.4.5 Effect of The Electrode

The above simulations did not account for the electrode. These simulations cor-

responded to electrode with zero thickness Ls = 0 nm or infinite electrical con-

ductivity σs → ∞. If taking σs = 10 S/m and Ls = 100 nm, the magnitude of

the predicted j∗C was found to decrease by a factor 2 (not shown) compared with

results obtained without electrode (Figure 8.3). This was due to the increase in

the overall electrical resistance of the system.

Figure 8.8 shows the slope of the jC versus ψs curves from CV simulations as

152



(a)

0.0 0.1 0.2 0.3 0.4 0.5

-1.0

-0.5

0.0

0.5

1.0

C
ur

re
nt

 d
en

si
ty

, J
s (

10
7 A

/m
2 )

Surface potential, s (V)

v=107 V/s, c =1 mol/L
 D=2 10-9 m2/s
 D=2 10-8 m2/s
 D=2 10-7 m2/s

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

Su
rf

ac
e 

ch
ar

ge
 d

en
si

ty
, q

s (
C

/c
m

2 )

 D=2 10-9 m2/s
 D=2 10-8 m2/s
 D=2 10-7 m2/s 

0.0

0.2

0.4

0.6

0.8

1.0

Su
rf

ac
e 

po
te

nt
ia

l, 
s (

V
)

Dimensionless time, t/2tCV

Figure 8.7: Plots of (a) jC versus ψs and (b) qs versus dimensionless time t/2t0

predicted from CV simulations for three values of ion diffusion coefficient, i.e.

D = 2× 10−9, 2× 10−8, and 2× 10−7 m2/s. Results were obtained by numerically

solving the MPNP model with a Stern layer [Equations (8.4) and (8.5)] without

accounting for the electrode (Ls = 0 nm) for v = 107 V/s and c∞ = 1 mol/L.
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a function of dimensionless scan rate v∗ for three cases with or without electrode,

namely, (i) σs → ∞ S/m (or Ls = 0 nm), (ii) σs = 10 S/m and Ls = 100 nm, and

(iii) σs = 0.01 S/m and Ls = 100 nm. Other parameters were identical to those

used to generate Figure 8.3. Results for the limiting case of σs → ∞ were taken

from Figure 8.4. Figure 8.8 demonstrates that the slope of jC versus ψs curve

was dominated by the electrode when its conductivity was small (e.g., σs = 0.01

S/m). For a relatively large electrode conductivity (e.g., σs = 10 S/m), the slope

corresponded to the effective conductance of the electrode and electrolyte in series

expressed as (L/σ)eff = L/σ + Ls/σs.
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Figure 8.8: Slope of the jC versus ψs curves predicted from CV simulations as

a function of dimensionless scan rate v∗ for σs → ∞, σs = 10, and 0.01 S/m,

respectively. Results were obtained by numerically solving the MPNP model with

a Stern layer [Equations (8.7) to (8.13)] accounting for the electrode with L = 80

nm and Ls = 100 nm.

Finally, Figure 8.9 shows the predicted specific capacitance Cs from CV sim-

ulations as a function of dimensionless scan rate v∗ for the three cases considered
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in Figure 8.8. Here again, the value of Cs retrieved from CV curves was constant

and equal to Cs = 87.5 µF/cm2 for v∗ smaller than a critical value which de-

pended on σs. Then, it was identical to the specific capacitance under equilibrium

conditions predicted by Equations (8.15) and (8.16) and was independent of the

electrode electrical conductivity σs. Beyond the critical dimensionless scan rate

v∗cr, predicted values of Cs decreased rapidly with increasing v∗. In addition, v∗cr

increased significantly with increasing electrode electrical conductivity σs. Figure

8.9 established that the electrode electrical conductivity does not affect the double

layer capacitance retrieved from CV measurements at low scan rates. However,

it significantly affects the measured capacitance at large scan rates which reflects

the charging rate performance of EDLCs.
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Figure 8.9: Predicted specific capacitance from CV simulations as a function of

dimensionless scan rate v∗ for three cases corresponding to σs → ∞, σs = 10, and

0.01 S/m. Results were obtained by numerically solving the MPNP model with a

Stern layer [Equations (8.7) to (8.13)] accounting for the electrode with Ls = 100

nm.
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8.5 Conclusions

This chapter presented numerical simulations of cyclic voltammetry measurements

for determining the electric double layer capacitance near a planar electrode in

aqueous electrolyte solutions. For the first time, a modified Poisson-Nernst-Planck

model accounting for the Stern layer was used to simulate the transient double

layer dynamics under large electrolyte concentration and electric potential while

simultaneously accounting for the electrode electrical conductivity. A dimensional

analysis was performed and dimensionless numbers governing the CV measure-

ments were also identified. The following conclusions can be drawn:

1. Eight dimensionless numbers given by Equation (8.14) were identified to

govern the electron and ion transport in the charging dynamics of electric

double layers in binary symmetric electrolytes with planar electrode during

CV measurements.

2. For electrodes with large radius of curvature, the hump observed in CV

curves was due to the saturation of ion concentration at the electrode surface

as the electric potential increased.

3. The predicted EDL capacitance from CV simulations was constant and equal

to the capacitance under equilibrium conditions for small dimensionless scan

rate, i.e., v∗ ≪ 1.

4. The electrode had no effect on the EDL capacitance measured at scan rates

smaller than a critical value. This critical scan rate decreased with increasing

electrode electrical conductivity.

The model developed here can be readily extended to simulate the charging/discharging

of mesoporous EDLCs by accounting for the three-dimensional electrode architec-

ture [199, 244]. In fact, the above governing equations and boundary conditions

remain valid for mesoporous electrodes as long as continuum theory is valid. The
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latter has been examined in the literature [215–218] and is typically accepted when

the pore diameter is larger than 3−5 nm [215–218]. Then, the model can be used

to identify the optimum electrode architecture to achieve maximum capacitance

and charging performance.
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CHAPTER 9

Physical Modeling of EDLCs With Asymmetric

Electrolytes

The previous chapter reported simulations of EDLCs with binary and symmet-

ric electrolytes. However, practical electrolytes are typically asymmetric. This

chapter derives a new model from first principles valid for asymmetric electrolytes

and/or in the presence of multiple ion species. It also presents physical mod-

eling of cyclic voltammetry for EDLCs with binary asymmetric electrolytes and

identifies the self-similar behavior of double layer integral capacitance.

9.1 Introduction

Cyclic voltammetry (CV) is a powerful technique in the field of electrochemistry

[9,331,368]. It has been the subject of intense studies in electrochemical sensing [9,

331,368] and in electrical energy storage and conversion [31,149,177,333,369,370].

In these applications [31, 149, 177, 333, 369, 370], the electric potential is typically

above 1 V while the electrolyte concentration is at least 1 mol/L. Numerous

studies [4,7,95,102,130,146,148–152,199,228,244,371] have demonstrated that the

finite ion size must be accounted for when simulating electric double layers at such

large electric potential and/or large electrolyte concentrations. However, these

studies have been mostly limited to binary and symmetric electrolytes [4,7,95,102,

130,146,148–152,199,228,244,371]. Practical electrolytes are typically asymmetric

in nature due to the difference in (i) their ion diffusion coefficients [253], (ii)

their ion sizes such as in ionic liquids [372], and/or (iii) their ion valencies such
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as aqueous H2SO4 and Na2SO4. Moreover, the use of electrolyte mixtures with

more than two ion species have been investigated in many practical applications

such as supercapacitors [373–375], water desalination [376,377], electrokinetics in

colloidal systems [108,113–119,378,379], electrochemical measurements involving

supporting electrolytes [380–382], and various biological processes including gating

and permeation in ion channels [156–162].

Figure 9.1(a) shows a schematic of the electric double layer structure con-

sisting of Stern and diffuse layers forming near a planar electrode [8, 9, 149].

Several studies have considered ion species with different effective diameters re-

sulting in multiple Stern layers with different thicknesses near the electrode sur-

face [108,118,119,378,379]. There were no free charges within the Stern layer im-

mediately adjacent to the electrode surface while all ion species co-existed in the

diffuse layer [108,118,119,378,379]. By contrast, only ion species of intermediate

sizes existed in the intermediate Stern layer(s). Such electric double layer structure

was typically used along with PB or MPB models [108, 118, 119, 378, 379]. How-

ever, the associated ion concentrations do not satisfy the overall electroneutrality

condition across the electrolyte domain expressed as
N∑
i=1

∫ L

−L
zici(x, t) = 0, even for

uniform concentrations typically used as initial conditions [95, 130, 146, 148–152].

This was caused by the small ions present in the intermediate Stern layer(s).

For example, for binary and asymmetric electrolytes with valencies (zi)1≤i≤2 and

initial bulk ion concentrations (ci∞)1≤i≤2, the above integral initially reduces to
2∑

i=1

∫ L

−L
zici∞dx = 2z2c2∞(H1 − H2) ̸= 0 where Hi = ai/2 (i=1 and 2) is the

Stern layer boundaries defined according to the diameters of the larger (a1) and

smaller (a2) ions, respectively. Note that c1(x, t) and c2(x, t) were non-zero for

−L + H1 ≤ x ≤ L − H1 and −L + H2 ≤ x ≤ L − H2, respectively. This is-

sue becomes particularly severe when simulating electric double layers in a finite

electrolyte domain.

This chapter aims to develop a model, from first principles, for simulating elec-
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(a)

(b)

Figure 9.1: Schematic and the computational domain of the electric double layer

structure consisting of Stern and diffuse layers (a) near a planar electrode (i.e.,

with the half domain) and (b) between two planar electrodes ( i.e., with the full

domain). Here, the ion diameters of large and small ion species were denoted by

a1 and a2, respectively.
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tric double layer dynamics valid for asymmetric electrolytes and/or for multiple

ion species accounting for different ion diameters, as well as different valencies

and diffusion coefficients. The model was used to simulate CV measurements for

binary asymmetric electrolytes.

9.2 Background

Existing simulations [95–99,103–119,378,379] of asymmetric electrolytes based on

continuum theory and accounting for finite ion size are mainly limited to equi-

librium conditions as discussed in Chapter 2. Recent efforts have been made to

account for the effect of finite ion size in modeling ion transport in concentrated

electrolyte solutions and/or under large electric potential [95, 130, 146, 150–162].

For example, Kilic et al. [146] derived a modified Poisson-Nernst-Planck (MPNP)

model valid for binary and symmetric electrolytes under large electrolyte concen-

tration and electric potential. The authors added an excess term accounting for

the entropic contribution due to finite-size ions in the expression of the Helmholtz

free energy. This resulted in an excess term in the expressions of the chemical

potentials and mass fluxes [95,130,146,151]. However, this MPNP model does not

apply to asymmetric electrolytes or to multiple ion species [95,130,146,148–152].

Alternatively, several authors [153–155] incorporated the finite ion size in ion

mass fluxes using the activity coefficient to account for the deviation from ideal

electrolyte solutions. However, these studies [153–155] were also limited to binary

and symmetric electrolytes. Note that the MPNP model developed by Kilic et

al. [146] can be also formulated in a form equivalent to that based on the activity

coefficient [95,119,130]. Based on this MPNP model [146], Wang and Pilon [149]

performed numerical simulations reproducing CV measurements for electric dou-

ble layer capacitors with binary and symmetric electrolytes for large concentration

and potential window. The model simultaneously accounted for the finite ion size,

Stern and diffuse layers, and the electrode electrical conductivity. A scaling anal-
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ysis was performed and dimensionless numbers governing CV measurements were

identified [149].

Davidson and Goulbourne [156] extended the MPNP model to multiple ion

species but with symmetric ion diameter and valency. Eisenberg and co-workers

[157–159] developed a MPNP model for binary asymmetric electrolytes based on

the variation principle. Horng et al. [160] later extended this model [157–159]

for asymmetric electrolytes with multiple ion species. However, these MPNP

models [157–160] were expressed as integral-differential equations, thus making the

numerical solution procedure highly involved particularly for three-dimensional

geometries.

Lu and Zhou [161,162] extended the expression of chemical potential developed

in Refs. [97,98] and proposed a “size-modified” Poisson-Nernst-Planck (SMPNP)

model for asymmetric electrolytes and multiple ion species. In their model [161,

162], they introduced a parameter “ki = ai/a0” representing the ratio of ion

diameter ai and the diameter of solvent molecules a0. The authors considered

different cases for ki > 1 and justified that the model successfully constrained the

ion concentrations below their maximum values. However, this SMPNP model

breaks down when neglecting the size of solvent molecules and ki → ∞ since the

excess term accounting for finite ion sizes approaches infinity.

To the best of our knowledge, no study has simulated CV curves for electric

double layer capacitors with asymmetric electrolytes and/or with multiple ion

species while accounting for the finite ion size. This chapter aims to develop,

from first principles, a model for simulating electric double layer dynamics valid

for asymmetric electrolytes and/or for multiple ion species. It simultaneously ac-

counts for (1) asymmetric electrolytes with (2) multiple ion species of (3) finite ion

size, and for (4) Stern and diffuse layers. The model will be useful for simulating

electric double layers in various electrochemical, colloidal, and biological systems.
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9.3 Analysis

9.3.1 Generalized Modified Poisson-Nernst-Planck Model

Previous studies [95, 130, 153–155, 312, 383] established that the effect of finite

ion size on the electric double layer dynamics can be generally accounted for by

employing the activity coefficient γi in the expression of the chemical potential of

each ion species “i”. The ion mass flux is proportional to the gradient of chemical

potential. Then, a generalized modified Poisson-Nernst-Planck (GMPNP) model

consisting of the Gauss law coupled with the mass conservation equations for each

one of the N ion species can be formulated as,
∇ · (ϵ0ϵr∇ψ) = −F

N∑
i=1

zici (9.1a)

∂ci
∂t

= ∇ ·
[
Dici

(
Fzi
RuT

∇ψ +∇ ln(γici)

)]
for i = 1, 2, ..., N (9.1b)

where ψ is the local electric potential while ci and Di are the molar concentration

and diffusion coefficient of ion species “i” in the electrolyte solution, respectively.

Here, ϵ0 and ϵr are the free space permittivity (ϵ0 = 8.854× 10−12 F/m) and the

relative permittivity of the electrolyte solution, respectively. The temperature is

denoted by T (in K), while F and Ru are the Faraday constant (F = 96485.3

sA/mol) and the universal gas constant (Ru = 8.314 JK−1mol−1), respectively.

Among various forms of activity coefficient existing in the literature, the

“Langmuir type” activity coefficient [113–119, 153, 384–387] directly relates γi to

the ion diameter ai to account for the exclusion volume caused by the finite size

of ion species. It is expressed as [384,385],

γi =
1

1−
N∑
i=1

ci
ci,max

(9.2)

where ci,max is the maximum ion concentration of ion species “i” and is given

by ci,max = 1/NAa
3
i when assuming simple cubic ion packing. Here, NA is the
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Avogadro’s number (NA = 6.022 × 1023 mol−1). Note that as the ion diameter

vanishes, i.e., ai = 0, ci,max tends to infinity and γi approaches 1. It is also

interesting to note that Equation (9.2) is a simplified expression of the activity

coefficient based on the Boublik-Mansoori-Carnahan-Starling-Leland equation-of-

state [95,99,106,107].

By employing the “Langmuir type” activity coefficient given by Equation (9.2),

the GMPNP model can be written as,

∇ · (ϵ0ϵr∇ψ) = −F
N∑
i=1

zici (9.3a)

∂ci
∂t

= ∇ ·
(
Di∇ci︸ ︷︷ ︸
Diffusion

+
DiFzici
RuT

∇ψ︸ ︷︷ ︸
Migration

+

DiNAci
N∑
i=1

a3i∇ci

1−NA

N∑
i=1

a3i ci︸ ︷︷ ︸
Correction due to asymmetric ion sizes

)
(9.3b)

Note that for vanishing ion diameter (ai = 0), Equations (9.1) and (9.3) re-

duce to the classical PNP model [149]. In addition, for binary and symmetric

electrolytes, N = 2, z1 = −z2, D1 = D2, and a1 = a2, and Equations (9.1) and

(9.3) reduce to the MPNP model developed in Refs. [95, 146]. Note also that the

GMPNP model can be also derived by considering the excess chemical poten-

tial µex
i for each ion species “i” and by noting its direct relation to the activity

coefficient γi given by µex
i = kBT ln(γi) [95,312,384].

Compared with previous MPNP models [95,130,146,148–162], the present gen-

eralized MPNP (GMPNP) model, given by Equations (9.1) to (9.3), has several

attractive features. First, it applies to asymmetric electrolytes and/or multiple

ion species. Second, it does not present any additional challenges in the numerical

solution procedure compared with the MPNP model for binary symmetric elec-

trolytes [95,130,146,148,149,151,152]. Moreover, it can be conveniently applied to

three-dimensional geometries unlike those expressed as integral-differential equa-

tions [157–160]. Third, it is consistent with the classical or existing models when
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considering ions as point charges or having identical diameters. Fourth, it can be

readily extended by employing other forms of activity coefficient based on avail-

able expressions of excess chemical potential µex
i such as the Boublik-Mansoori-

Carnahan-Starling-Leland equation-of-state [95, 99].

9.3.2 Schematics and Assumptions

In the present study, the double layer structure with multiple Stern layers proposed

in Refs. [108,118,119,378,379] was not adopted because this does not satisfy the

overall electroneutrality condition, as discussed previously. Instead, the electric

double layer was assumed to consist of (i) a single Stern layer adjacent to the

electrode surface and (ii) a diffuse layer beyond. Wang et al. [7, 149] previously

showed that the electrode curvature has negligible effect on the areal integral

capacitance for electrode or pore radii larger than 40 nm. Therefore, analysis

of planar electrodes is representative of macroporous and mesoporous electrodes

with large enough radii of curvature.

Figure 9.1(a) shows the half domain used in previous simulations for binary

and symmetric electrolytes [149]. By contrast, Figure 9.1(b) shows the schematic

of the computational domain used to simulate the electrolyte solution consisting of

binary asymmetric electrolytes between two identical planar electrodes A and B. In

the present study, simulations with the former and the latter domains were referred

to as “half-domain simulations” and “full-domain simulations”, respectively. Here,

the effective ion diameters of the larger and smaller ion species were denoted by

a1 and a2, respectively. The region of electrolyte solution consisted of three layers

including (1) the Stern layer of thickness H near each electrode surface located

at x = ±L and (2) the diffuse layer between the Stern layers, i.e., −L+H ≤ x ≤

L − H. Here, the thickness H was approximated as the effective radius of the

largest ion referred to as ion species 1, i.e., H = a1/2.
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To make the problem mathematically tractable, the following assumptions

were made: (1) the effective ion diameter was assumed to be independent of

electrolyte concentration [95, 146, 200], (2) the electrolyte dielectric permittivity

was constant and equal to that of water. Note that the dielectric permittivity

may depend on electric field and temperature [7, 189, 190, 199]. However, it is

typically assumed to be constant in scaling analysis, as performed in Refs. [4,

95,128,130,146,151,152,371] and in the present study. (3) isothermal conditions

prevailed throughout the electrode and electrolyte, (4) advection of the electrolyte

was assumed to be negligible, (5) the ions could only accumulate at the electrode

surface and could not diffuse into the electrode, i.e., there was no ion insertion,

and (6) the specific ion adsorption due to non-electrostatic forces was assumed to

be negligible.

9.3.3 One-dimensional Formulation

The local electric potential ψ(x, t) in the identical solid electrodes A and B of

electrical conductivity σs and thickness Ls was governed by the Poisson equation

expressed as [149,388,389],

∂

∂x

(
σs
∂ψ

∂x

)
= 0 for − Ls − L ≤ x < −L and L < x ≤ L+ Ls (9.4)

Moreover, the local electric potential ψ(x, t) and molar ion concentrations

ci(x, t) at time t and location x in the binary asymmetric electrolyte solution

were computed by solving the generalized MPNP model with a Stern layer. For

planar electrodes, the generalized MPNP model [Equations (9.3)] in the diffuse

layer (−L+H ≤ x ≤ L−H) can be expressed in its one-dimensional form as,
∂

∂x

(
ϵ0ϵr

∂ψ

∂x

)
= −F

2∑
i=1

zici (9.5a)

∂ci
∂t

= −∂Ni

∂x
(9.5b)
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Here, Ni denotes the mass flux of ion species “i” expressed as,

Ni(x, t) = −DiFzici
RuT

∂ψ

∂x
−Di

∂ci
∂x

− DiNAci

1−NA

2∑
i=1

a3i ci

∂

∂x

(
2∑

i=1

a3i ci

)
(9.6)

Moreover, the Stern layers can be accounted for via the boundary conditions

relating the potential drop across the Stern layer and the potential gradient at the

Stern/diffuse layer interface located at x = (L−H) and x = −(L−H) [7,95,146].

Then, it suffices to simulate only the diffuse layer in the computational domain

defined by −L+H ≤ x ≤ L−H [7,95,146]. For planar electrodes, the boundary

conditions accounting for the Stern layers are given by [7, 95,146],

∂ψ

∂x
(x = L−H, t) =

1

H
[ψ(x = L, t)− ψ(x = L−H, t)] and (9.7a)

−∂ψ
∂x

(x = −L+H, t) =
1

H
[−ψ(x = −L, t)− ψ(x = −L+H, t)] (9.7b)

The electric potential and current density were continuous across the elec-

trode/electrolyte interface located at x = ±L so that [149,366],

ψ(x = −L−) = ψ(x = −L+) and − σs
∂ψ

∂x
(x = −L−) = −ϵ0ϵr

∂2ψ

∂x∂t
(x = −L+) (9.8a)

ψ(x = L−) = ψ(x = L+) and − σs
∂ψ

∂x
(x = L+) = −ϵ0ϵr

∂2ψ

∂x∂t
(x = L−) (9.8b)

Moreover, at the Stern/diffuse layer interface located at x = ±(L−H), the mass

fluxes of ion species vanish since there is no ion insertion in the electrode material

[Assumption (5)] such that,

Ni(−L+H, t) = 0 and Ni(L−H, t) = 0 (9.9)

The initial conditions in the diffuse layer satisfy the electroneutrality condition

and are given by,

ψ(x, t = 0) = 0, c1(x, t = 0) = c1,∞, and c2(x, t = 0) = −c1,∞z1/z2 (9.10)
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where ci,∞ represents the bulk ion concentration of ion species “i”.

Note that the Ohmic IR drop due to the electrolyte solution is typically the

major source of resistance. It is often accounted for via a resistance in an equiv-

alent RC circuit while ignoring the electric double layer structure [9, 390]. By

contrast, the present study accounted for the detailed electric double layer struc-

ture. Thus, the electric potential drop in the electrolyte solution was rigorously

obtained by numerically solving the GMPNP model along with the boundary

conditions [Equations (9.5) to (9.10)].

9.3.4 Dimensional Analysis

Equations (9.4) to (9.10) constitute the one-dimensional generalized MPNP model

with a Stern layer for binary asymmetric electrolytes accounting for the electrodes.

Based on our previous studies [149], the following scaling parameters were intro-

duced,

x∗ =
x

λD
, t∗ =

tD1

λ2D
, ψ∗ =

ψ

RuT/z1F
, and c∗i =

ci
c1,∞

(9.11)

where λD =

√
ϵ0ϵrRuT/F 2

2∑
i=1

z2i ci,∞ is the Debye length for binary asymmetric

electrolytes [35]. Then, the governing Equation (9.4) in the electrode can be

expressed, in dimensionless form, as

∂

∂x∗

(
∂ψ∗

∂x∗

)
= 0 for − (Ls + L)/λD ≤ x < −L/λD

and L/λD < x ≤ (L+ Ls)/λD (9.12)

Similarly, the governing Equations (9.5) in the electrolyte were transformed into

the dimensionless form as,
∂2ψ∗

∂x∗2
= −c

∗
1 + z∗2c

∗
2

1− z∗2
(9.13a)

for (−L+ a1/2)/λD ≤ x∗ ≤ (L− a1/2)/λD

∂c∗i
∂t∗

= −∂N
∗
i

∂x∗
(9.13b)
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with the dimensionless ion flux N∗
i given by,

N∗
i (x

∗, t∗) = −Di

D1

∂c∗i
∂x∗

− Di

D1

zi
z1
c∗i
∂ψ∗

∂x∗
− Di

D1

c∗i

2−
2∑

i=1

νpic
∗
i

∂

∂x∗

2∑
i=1

νpic
∗
i (9.14)

where z∗2 = z2/z1 is the ratio of valencies between smaller and larger ion species,

i.e., z∗2 = −1 for symmetric electrolytes. Here, the packing parameter for ion

species “i” is defined as νpi = 2c1∞/(1/a
3
iNA). It represents the ratio of the total

bulk ion concentration to the maximum ion concentration 1/a3iNA assuming a

simple cubic packing of ions of diameter ai.

The dimensionless potential ψ∗
s(t

∗) imposed at the electrode surface in CV

measurements is given by,

ψ∗
s(t

∗) ={
ψ∗
max − v∗[t∗ − 2(m− 1)τ ∗CV ] for 2(m− 1)τ ∗CV ≤ t∗ ≤ (2m− 1)τ ∗CV (9.15a)

ψ∗
min + v∗[t∗ − (2m− 1)τ ∗CV ] for (2m− 1)τ ∗CV ≤ t∗ ≤ 2mτ ∗CV (9.15b)

where τ ∗CV = (ψ∗
max −ψ∗

min)/v
∗ represents the dimensionless half cycle period and

v∗ = (λ2D/D1)/[(RuT/z1F )/v] is the dimensionless scan rate. It can be interpreted

as the ratio of the ion diffusion time scale (λ2D/D1) and the characteristic time

for reaching the thermal potential RuT/z1F at scan rate v. Moreover, ψ∗
max =

ψmax/(RuT/z1F ) and ψ
∗
min = ψmin/(RuT/z1F ) are the maximum and minimum

surface potentials, respectively, scaled by the thermal potential. They can be

also interpreted as the ratio of characteristic times to reach ψmax or ψmin and the

characteristic time for reaching the thermal potential at scan rate v.

Moreover, the boundary conditions [Equations (9.7) and (9.9)] at the Stern/diffuse

layer interface located at x∗ = ±(L − a1/2)/λD can be written in dimensionless

form as,

2

a∗1

∂ψ∗

∂x∗
(x∗ = L∗ − a∗1/2, t

∗) = ψ∗
s(t

∗)− ψ∗(x∗ = L∗ − a∗1/2, t
∗) (9.16a)

− 2

a∗1

∂ψ∗

∂x∗
(x∗ = −L∗ + a∗1/2, t

∗) = −ψ∗
s(t

∗)− ψ∗(x∗ = −L∗ + a∗1/2, t
∗) (9.16b)

N∗
i (L

∗ − a∗1/2, t
∗) = N∗

i (−L∗ + a∗1/2, t
∗) = 0 (9.16c)
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where L∗ = L/λD and a∗1 = a1/λD are respectively the half inter-electrode dis-

tance and the effective ion diameter scaled by the Debye length representing the

thickness of the electric double layer. Similarly, the boundary conditions [Equa-

tions (9.8)] at the electrode/electrolyte interface located at x∗ = ±L/λD became,

in dimensionless form,

ψ∗(x = ±L±/λD) = ψ∗(x = ±L∓/λD) and (9.17a)

σ∗
s

ψ∗
max − ψ∗

min

L∗
s

L∗
∂ψ∗

∂x∗
(x∗ = ±L±/λD) =

∂2ψ∗

∂x∗∂t∗
(x∗ = ±L∓/λD) (9.17b)

where L∗
s = Ls/λD is the electrode thickness scaled by the Debye length. Note

that σ∗
s = [σs(ψmax − ψmin)/Ls]/(Fz1c1∞D1/L) represents the ratio of the char-

acteristic current density in the electrode to that in the electrolyte. It can be also

interpreted as the ratio of time scales for charge transport in the electrolyte and

in the electrode.

Similarly, the dimensionless initial conditions for ψ∗ and c∗i in the diffuse layer,

for −L∗ + a∗1/2 ≤ x∗ ≤ L∗ − a∗1/2, simplify as,

ψ∗(x∗, t∗ = 0) = 0, c∗1(x
∗, t∗ = 0) = 1, and c∗2(x

∗, t∗ = 0) = −1/z∗2 (9.18)

Considering the dimensionless governing equations and associated boundary

and initial conditions, eleven key dimensionless similarity parameters can be iden-

tified as

v∗ =
λ2D/D1

(RuT/z1F )/v
, ψ∗

max =
ψmax

RuT/z1F
, ψ∗

min =
ψmin

RuT/z1F
, L∗ =

L

λD
,

a∗1 =
a1
λD

, νp1 = 2a31NAc1∞, νp2 = 2a32NAc1∞, D∗
2 =

D2

D1

, z∗2 =
z2
z1
,

σ∗
s =

σs(ψmax − ψmin)/Ls

Fz1c1∞D1/L
, and L∗

s =
Ls

λD
(9.19)

where νp1 represents the packing parameter due to finite ion size of ion species “1”.

Note that v∗, ψ∗
max, ψ

∗
min, L

∗, a∗1, and νp1 were identical to or direct functions of

those identified in Ref. [149] for the CV simulations of electric double layer capac-

itors with binary symmetric electrolytes. When considering binary asymmetric
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electrolytes, three additional dimensionless numbers appear, namely, νp2, D
∗
2, and

z∗2 . The dimensionless numbers σ∗
s and L∗

s account for the charge transport in the

electrode.

9.3.5 Constitutive Relations

In order to solve Equations (9.5) to (9.10) or Equations (9.13) to (9.18), the elec-

trolyte properties ϵr, ai, zi, Di, c1∞ along with the temperature T , and the surface

potential ψs(t) are needed. The present study focuses on binary electrolytes at

room temperature T = 298 K with different ion diameter, diffusion coefficient,

and/or valency. The electrolyte relative permittivity was taken as that of water

ϵr = 78.5 [253] while the effective ion diameter ai ranged from 0.60 nm to 1.0

nm typical of solvated ion diameters [200]. The valencies (z1 : z2) corresponded

also to realistic conditions including 1 : −1, 1 : −2, 2 : −2, or 1 : −3. The

ion diffusion coefficients Di varied from 1.957 × 10−9 m2/s to 5.273 × 10−9 m2/s

representative of aqueous and organic electrolytes [253]. The initial and bulk ion

concentrations was c1,∞ = 1.0 mol/L and c2,∞ = −c1,∞z1/z2 satisfying the overall

electroneutrality condition. Moreover, the maximum and minimum surface elec-

tric potentials were ψmax = 0.5 V and ψmin = −0.5 V, respectively. The scan rate

in actual CV measurements for electrical energy storage devices ranges typically

from 10−3 to 200 V/s [31, 177, 333, 369, 370]. Here, the scan rate v varied over

a wider range from 10−2 to 108 V/s. This was due to two main reasons. First,

small electrode thickness (0− 100 nm) was considered along with realistic values

(> 1 µm) to validate the scaling analysis. The capacitance starts to decrease at

very large scan rate for such small electrode thickness [149]. Second, asymptotic

behaviors of electric double layers were explored at very large scan rates. Our

previous study [149] established that electric double layers behave as a resistor

under such conditions. Finally, the electrode electrical conductivity was chosen

to be 10−5 to 102 S/m typical of carbon materials [357,358].
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9.3.6 Method of Solution

The governing Equations (9.5) and (9.6) were solved along with the boundary and

initial conditions given by Equations (9.7) to (9.10) using the commercial finite

element solver COMSOL 4.2. CV measurements were simulated by numerically

imposing the periodic surface electric potential given by Equation (8.1).

Simulations of CV measurements were performed for at least three cycles.

The numerical convergence criterion was defined such that the maximum relative

difference in the predicted capacitive current density jC was less than 1% when (i)

reducing the mesh size by a factor of two and (ii) dividing the time step by two.

The mesh size was the smallest at the electrode surfaces due to the large potential

gradient and then gradually increased. Converged solutions were achieved by

imposing a time step of ∆t ≈ τCV /800 = (ψmax − ψmin)/800v with the mesh size

∆x/L = 5×10−14 at the Stern/diffuse layer interface with a growth rate of 1.3 up

to ∆x/L = 1/250 in the rest of the domain. Based on these convergence criteria,

the total number of finite elements was less than 1910 for all cases simulated in

the present study.

9.3.7 Data Processing

The capacitive current density jC from CV simulations was computed based on

its definition as [149,291,323,324,391],

jC(t) = −ϵ0ϵr
∂2ψ

∂x∂t

∣∣∣∣
xL or −xL

at xL = L−H or − xL = −(L−H) (9.20)

The corresponding dimensionless capacitive current density j∗C at x∗L = L∗ − a∗1/2

and −x∗L = −L∗ + a∗1/2 is expressed as,

j∗C(t
∗) =

jC(t)

Fz1D1c1,∞/λD
= −

2∑
i=1

z∗2i c
∗
i,∞

∂2ψ∗

∂x∗∂t∗

∣∣∣∣
x∗
L or −x∗

L

(9.21)

In order to reproduce typical CV measurements, the current densities jC(t) and

j∗C(t
∗) were plotted as functions of ψs(t) and ψ

∗
s(t

∗), respectively.
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9.3.8 Validation

The numerical tool was validated based on existing solutions reported in the litera-

ture. The transient ion concentration and electric potential profiles were predicted

by solving the PNP and MPNP models for binary and symmetric electrolytes

(N = 2, z1 = −z2 = z, and a1 = a2) with constant surface electric potential.

The results were successfully compared with the reported numerical solutions for

ci(x, t) and ψ(x, t) for a wide range of packing parameter νp and dimensionless

surface potential ψ∗
s [146].

9.4 Results and Discussions

Results in the Appendix (Figures A.2 and A.3) demonstrate that half-domain CV

simulations should only be used for symmetric electrolytes while the full domain

must be simulated for asymmetric electrolytes. Consequently, all the following CV

simulations were performed for the entire domain consisting of electrolyte solution

between two identical planar electrodes.

9.4.1 Asymmetric Versus Symmetric Electrolytes

9.4.1.1 Effect of Asymmetric Ion Diameter

Figure 9.2 shows CV curves predicted for three cases with different ion diameters,

namely (i) a1 = a2 = 0.60 nm, (ii) a1 = 0.66 nm and a2 = 0.60 nm, and (iii)

a1 = a2 = 0.66 nm. The ion valencies and diffusion coefficients were z1 = −z2 = 1

and D1 = D2 = 1.957× 10−9 m2/s, respectively. Other parameters were c1,∞ = 1

mol/L, v = 104 V/s, L = 200 µm, ψmax = ψmin = 0.5 V, T = 298 K, and ϵr = 78.5.

Results were obtained by solving the GMPNP model with a Stern layer [Equations

(9.5) to (9.10)] without accounting for the potential drop across the electrodes

corresponding to σs → ∞ S/m or Ls = 0 m. Figure 9.2 demonstrates that the
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current density jC for asymmetric electrolyte with a1 = 0.66 nm and a2 = 0.60 nm

lay between those obtained for symmetric electrolytes with ion diameter a equals

to 0.66 nm and 0.60 nm. The relative difference in jC between asymmetric and

symmetric electrolytes was about 9%. Figure 9.2 also indicates that the predicted

current density jC increased with decreasing ion diameter. This can be attributed

to the fact that smaller ions have larger maximum ion concentrations ci,max and

thus feature a larger gradient in electric potential near the electrode surface [95].

This, in turn, led to a larger capacitive current density according to Equation

(9.20). Overall, these results demonstrate that the unequal ion size needs to be

accounted for in order to accurately predict the current density for asymmetric

electrolytes.

9.4.1.2 Effect of Asymmetric Valency

Figure 9.3 shows the CV curves predicted for electrolytes with different valencies,

namely (i) z1 = −z2 = 1, (ii) z1 = 1 and z2 = −2, and (iii) z1 = −z2 = 2. Here,

the ion diameters and diffusion coefficients were identical such that a1 = a2 = 0.60

nm, D1 = D2 = 1.957×10−9 m2/s, and Ls = 0 m. It is evident that the predicted

current density jC for asymmetric valency z1 = 1 and z2 = −2 lay between those

obtained for symmetric valency with z1 = −z2 = 1 and z1 = −z2 = 2. The relative

difference in current density jC between asymmetric and symmetric electrolytes

was about 9%. Moreover, jC increased with increasing valency |zi|. This can be

attributed to the fact that increasing the valency |zi| led to increasing the amount

of charges accumulated near the electrode surface. This, in turn, led to a larger

local electric field near the electrode surface and thus larger current density.
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Figure 9.2: Predicted jC versus ψs curves from CV simulations for three cases

with different ion diameters, namely, (i) a1 = a2 = 0.60 nm, (ii) a1 = 0.66 and

a2 = 0.60 nm, and (iii) a1 = a2 = 0.66 nm. Results were obtained by solving the

GMPNP model with a Stern layer [Equations (9.5) to (9.10)] without accounting

for the potential drop across the electrodes corresponding to σs → ∞ S/m or

Ls = 0 m. Other parameters were c1,∞ = 1 mol/L, v = 104 V/s, L = 200 µm,

ψmax = ψmin = 0.5 V, T = 298 K, and ϵr = 78.5.

9.4.1.3 Effect of Asymmetric Diffusion Coefficient

Figures 9.4 show jC versus ψs predicted at (a) low scan rate v = 102 V/s and (b)

high scan rate v = 105 V/s for three cases with different ion diffusion coefficients,

namely (i) D1 = D2 = 2.69D0, (ii) D1 = D0 and D2 = 2.69D0, and (iii) D1 =

D2 = D0 with D0 = 1.957 × 10−9 m2/s. The ion diameter and valency were

identical namely, a1 = a2 = 0.60 nm and z1 = −z2 = 1 while the electrode

thickness was zero, i.e., Ls = 0 m. Figure 9.4a demonstrates that, at low scan

rate v = 102 V/s, the predicted CV curves overlapped for all three cases despite
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Figure 9.3: Predicted jC versus ψs curves from CV simulations for three cases

with different valencies, namely, (i) z1 = −z2 = 2, (ii) z1 = 1 and z2 = −2, and

(iii) z1 = −z2 = 1. The model and other parameters were identical to those used

to generate the results shown in Figure 9.2.

differences in diffusion coefficients. Moreover, the CV curves were symmetric

about the jC = 0 axis. Note that similar phenomena were also observed in CV

simulations for binary and symmetric electrolytes [149]. This can be attributed

to the fact that ion transport is diffusion-independent at low scan rates [149] and

is controlled by the electric field. On the other hand, Figure 9.4b demonstrates

that the predicted CV curves became distorted at large scan rate v = 105 V/s.

Here, the predicted current density jC and thus the capacitance increased with

increasing ion diffusion coefficient D1 or D2. Indeed, larger diffusion coefficients

enable ions to better follow the rapid variations in electric potential [149]. These

results demonstrate that asymmetric ion diffusion coefficients must be accounted

for in CV simulations at large scan rates but have no effect on CV curves at low

scan rates.
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Figure 9.4: Predicted jC versus ψs curves from CV simulations for (a) v = 102

V/s and (b) v = 105 V/s. Three cases with different ion diffusion coefficients were

considered, namely, (i) D1 = D2 = 2.69D0, (ii) D1 = D0 and D2 = 2.69D0, and

(iii) D1 = D2 = D0 along with D0 = 1.957 × 10−9 m2/s. The model and other

parameters were identical to those used to generate the results shown in Figure

9.2.
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9.4.2 Dimensional Analysis

Table 9.1 summarizes the different values of v, L, T , ψmax, ψmin, ai, Di, zi, and

ci∞ for four different cases of binary asymmetric electrolytes considered. Pa-

rameters used in Case 1 corresponded to aqueous asymmetric electrolyte KOH

[149, 200, 253]. Note that the dimensionless numbers for all four cases were iden-

tical, namely, v∗ = 1.8× 10−5, ψ∗
max = −ψ∗

min = 19.5, L∗ = 3.29× 105, a∗1 = 2.17,

νp1 = 0.346, νp2 = 0.26, D∗
2 = 2.5, z∗2 = −1, σ∗

s → ∞, and L∗
s = 0. Figures

9.5a shows the predicted jC versus ψs curves obtained for these four cases. Re-

sults were obtained by numerically solving the generalized MPNP model with a

Stern layer [Equations (9.5) to (9.10)]. Figure 9.5a indicates that the CV curves

were significantly different in these four cases. However, Figure 9.5b shows that

the same data plotted in terms of dimensionless current density j∗C versus di-

mensionless surface potential ψ∗
s collapsed on a single CV curve. Note that such

self-similar behaviors were also observed for cases with z∗2 = −2 and z∗2 = −3.

Overall, these results illustrated that the governing equations and the boundary

and initial conditions were properly scaled by parameters defined in Equations

(9.11). More importantly, they show that the electric double layer dynamics for

binary asymmetric electrolytes near planar electrodes in CV measurements were

governed by eleven dimensionless similarity parameters, namely, v∗, ψ∗
max, ψ

∗
min,

L∗, a∗1, νp1, νp2, D
∗
2, z

∗
2 , σ

∗
s , and L

∗
s given by Equation (9.19).

Moreover, a dimensionless areal integral capacitance can be defined as

C∗
s =

Cs

z1eNAD1c1,∞/λDv
=

1

ψ∗
max − ψ∗

min

∮
j∗C
2v∗

dψ∗
s (9.22)

where Cs is defined in Equation (8.2). Graphically, C∗
s corresponds to the area en-

closed by the j∗C versus ψ∗
s curve. Figure 9.5b demonstrates that C∗

s depends only

on the eleven dimensionless numbers so that C∗
s = f(v∗, ψ∗

max, ψ
∗
min, L

∗, a∗1, νp1, νp2,

D∗
2, z

∗
2 , σ

∗
s , L

∗
s). This relation can be used to formulate design rules for EDLCs with

asymmetric electrolytes. However, finding this multidimensional function falls be-
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Figure 9.5: Predicted (a) jC versus ψs curves and (b) j∗C versus ψ∗
s curves

from CV simulations for four cases with parameters given in Table 9.1. Results

were obtained by numerically solving the generalized MPNP model with a Stern

layer [Equations (9.5) to (9.10)] for v∗ = 1.8 × 10−5, ψ∗
max = −ψ∗

min = 19.5,

L∗ = 3.29× 105, a∗1 = 2.17, νp1 = 0.346, νp2 = 0.26, D∗
2 = 2.5, z∗2 = −1, σ∗

s → ∞,

and L∗
s = 0.
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yond the scope of this study.
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Finally, Figure 9.6 shows the predicted j∗C versus ψ∗
s curves for three cases with

z∗2 = −1,−2, and −3, respectively. The model and the other ten dimensionless

numbers were identical to those used to generate the results shown in Figure 9.5.

It is evident that j∗C and therefore C∗
s increased as z∗2 decreased (i.e., increasing

|z∗2 |) due to the increase in the amount of charges accumulated at the electrode

surface which induced a larger electric current.
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Figure 9.6: Predicted j∗C versus ψ∗
s curves from CV simulations for three different

values of z∗2 , namely, z∗2 = −1, −2, and −3. The model and other dimensionless

numbers were identical to those used to generate the results shown in Figure 9.5.

9.4.3 Capacitance Versus Scan Rate

Figure 9.7a shows the double layer areal integral capacitance Cs predicted from

CV simulations and estimated using Equation (8.2) as a function of scan rate

v ranging from 10−2 to 107 V/s for 17 cases of binary asymmetric electrolytes

without accounting for the potential drop across the electrodes. This corresponds

to cases with infinitely large electrode electrical conductivity (σs → ∞ S/m)
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or zero electrode thickness (Ls → 0 m). Table 9.2 summarizes the values of

the ten dimensionless parameters L∗, z∗2 , ψ
∗
max = −ψ∗

min, D
∗
2, a

∗
1, νp1, νp2, σ

∗
s ,

and L∗
s along with the maximum capacitances Cs,0 corresponding to the plateau

observed in Cs versus v at low scan rates. Note that Cs,0 depends on a variety

of parameters including ψs, a1, a2, z1, z2, and c1∞. However, it falls beyond the

scope of this manuscript to find an analytical expression relating these parameters

for asymmetric electrolytes. A remarkably broad range of values were considered

for each dimensionless number. It is evident that these Cs versus v curves as

well as Cs,0 were significantly different from one another. Figure 9.7b shows the

same data as those shown in Figure 9.7a but plotted in terms of Cs/Cs,0 as a

function of 2v∗L∗/[(1 + D∗
2)(ψ

∗
max − ψ∗

min)]. It is interesting to note that all the

curves collapsed on a single line, irrespective of the different values of L∗, z∗2 ,

ψ∗
max = −ψ∗

min, D
∗
2, a

∗
1, νp1, and νp2. The Appendix presents the effects of each

parameter separately. To the best of our knowledge, the present study is the first

to identify this self-similar behavior of electric double layer integral capacitance

in CV measurements. Fitting the dimensionless data shown in Fig. 9.7b yields

the following correlation with a coefficient of determination equal to 0.999,

Cs

Cs,0

=
1

1 +

[
2v∗L∗/(1 +D∗

2)(ψ
∗
max − ψ∗

min)

1.22

]1.44 (9.23)

The dimensionless x-axis in Figure 9.7b can be interpreted as the ratio of two

time scales,

2v∗L∗

(1 +D∗
2)(ψ

∗
max − ψ∗

min)
=

2λDL/(D1 +D2)

(ψmax − ψmin)/v
=
τRC

τCV

(9.24)

where τRC is the “RC time scale” for binary asymmetric electrolytes corresponding

to the characteristic time of ions’ electrodiffusion [128] and τCV is the half cycle

period of CV measurements. They are expressed as,

τRC =
√
τLτD =

λDL

(D1 +D2)/2
and τCV =

ψmax − ψmin

v
(9.25)
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Figure 9.7: Predicted (a) capacitance Cs as a function of scan rate v and (b)

ratio Cs/Cs,0 as a function of 2v∗L∗/[(1 + D∗
2)(ψ

∗
max − ψ∗

min)] obtained from CV

simulations for cases 1 to 17 without accounting for the potential drop across

the electrodes (i.e., σ∗
s → ∞ or L∗

s = 0) with dimensionless parameters L∗, z∗2 ,

ψ∗
max = −ψ∗

min, D
∗
2, a

∗
1, νp1, and νp2 summarized in Table 9.2.
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Here, τL = 2L2/(D1+D2) is the time scale for ion diffusion in binary asymmetric

electrolytes and τD = 2λ2D/(D1 +D2) has been termed as the “charge relaxation

time scale” [128]. Note that τRC reduces to the corresponding “RC time scale” of

binary symmetric electrolytes when D∗
2 = 1 as considered in Refs. [128, 130, 152].

Figure 9.7b indicates that two regimes can be clearly identified: (i) 2v∗L∗/[(1 +

D∗
2)(ψ

∗
max − ψ∗

min)] ≪ 1 or τRC ≪ τCV , corresponds to the quasi-equilibrium or

ion diffusion-independent regime and (ii) 2v∗L∗/[(1 +D∗
2)(ψ

∗
max − ψ∗

min)] ≫ 1 or

τRC ≫ τCV , corresponds to ion diffusion-limited regime.
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9.4.4 Effect of The Electrode

The above simulations ignored the potential drop across the electrodes. Figure

9.8a shows the double layer areal integral capacitance Cs predicted from CV sim-

ulations as a function of scan rate v ranging from 10−2 to 108 V/s for 12 cases

accounting for charge transport in the electrodes. Table 9.2 summarizes the values

of the eleven dimensionless parameters L∗, z∗2 , ψ
∗
max = −ψ∗

min, D
∗
2, a

∗
1, νp1, νp2,

σ∗
s , and L∗

s along with the maximum capacitances Cs,0 for cases 18 to 29. It is

evident that the curves Cs versus v were significantly different from one another

due to the broad range of parameters considered. Figure 9.8b shows the same

data as those shown in Figure 9.8a but plotted in terms of Cs/Cs,0 as a function

of τRC/τCV (1 + 80/σ∗
s). The fitted curve given by Equation (9.23) for cases ig-

noring the potential drop across the electrodes (σ∗
s → ∞ or L∗

s → 0) was also

shown in Figure 9.8b for comparison purposes. It is interesting to note that all

the curves collapsed on a single line, irrespective of the different values of L∗, z∗2 ,

ψ∗
max = −ψ∗

min, D
∗
2, a

∗
1, νp1, νp2, σ

∗
s , and L

∗
s.

The dimensionless x-axis in Figure 9.8b can be interpreted as,

τRC

τCV

(
1 +

80

σ∗
s

)
=
τRC

τCV

(
1 + 80

τs
τd

)
(9.26)

where σ∗
s = τd/τs represents the ratio of characteristic charge transport time scale

in the electrolyte τd to that in the electrode τs as discussed previously. Note that

when σ∗
s is very large (e.g., σ∗

s ≫ 80), the charge transport in the electrode is much

faster than that in the electrolyte. Then, it suffices to simulate the electrolyte in

CV simulations.

9.5 Conclusions

This chapter developed a generalized modified Poisson-Nernst-Planck model for

simulating electric double layer dynamics. This model was derived from first

principles based on excess chemical potential and Langmuir activity coefficient
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Figure 9.8: Predicted (a) capacitance Cs as a function of scan rate v and (b) ratio

Cs/Cs,0 as a function of τRC/τCV (1 + 80/σ∗
s) obtained from CV simulations for

cases 18 to 29 with dimensionless parameters L∗, z∗2 , ψ
∗
max = −ψ∗

min, D
∗
2, a

∗
1, νp1,

νp2, σ
∗
s , and L

∗
s summarized in Table 9.2.
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accounting simultaneously for (1) asymmetric electrolytes with (2) multiple ion

species of (3) finite ion size, and (4) Stern and diffuse layers. This study estab-

lished that asymmetric ion diameters and valencies must be accounted for in CV

simulations with asymmetric electrolytes for all scan rates. By contrast, asym-

metric ion diffusion coefficient affected the CV curves only at large scan rates.

Dimensional analysis of the governing equations was also performed for CV

measurements with planar electrodes. Eleven dimensionless numbers given by

Equation (9.19) were identified to govern the CV measurements of electric double

layer in binary asymmetric electrolytes between two identical planar electrodes of

finite thickness. For the first time, a self-similar behavior was identified for the

electric double layer integral capacitance estimated from CV measurements with

binary asymmetric electrolytes and planar electrodes. Physical interpretation was

also provided. This model provides a theoretical framework to investigate more

complex situations with asymmetric electrolytes and/or multiple ion species such

as redox reactions in pseudocapacitors and the interplay of Faradaic and capacitive

currents encountered in fast-scan cyclic voltammetry.
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CHAPTER 10

Analysis of Cyclic Voltammetry for

Pseudocapacitive Materials

10.1 Introduction

As previously discussed, pseudocapacitors hold great promises for meeting the

energy and power demands in current and emerging applications [1,25,27–30,45–

59,392]. In-depth understanding of transport phenomena in pseudocapacitors can

enable their optimization in a rational and efficient way.

An semi-empirical approach based on cyclic voltammetry measurements has

been developed and used extensively to discriminate the contributions of electric

double layers and redox reactions to the total current and capacitance [29,30,177,

369, 370, 393–406]. Specifically, the measured total current jt at a given surface

potential ψs is assumed to relate to the scan rate v according to the semi-empirical

relationship [29,30,177,369,370,393–406],

jt(ψs) = k1(ψs)v + k2(ψs)v
1/2 (10.1)

This approach was initially supported by two facts. First, the capacitive current

jC is known to vary linearly with the scan rate v in the absence of redox reactions,

i.e., jC = k1v and jF = 0 [9, 10]. Second, the Faradaic current jF due to surface

redox reactions in a semi-infinite electrolyte domain without ion intercalation in

the electrode is proportional to v1/2 when ignoring the presence of electric double

layers, i.e., jF = k2v
1/2 and jC = 0 [9, 407–410]. The coefficients k1 and k2 are
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semi-empirical coefficients determined experimentally and depend on the potential

ψs imposed at the current collector. In practice, Equation (10.1) can be written

as,

jt
v1/2

= k1v
1/2 + k2 (10.2)

Thus, k1 and k2 for a given electric potential ψs can be determined as the the slope

and intercept of the jt/v
1/2 versus v1/2 plot, respectively [29,30,177,369,370,393–

406]. To the best of our knowledge, despite its extensive usage, this semi-empirical

analysis has not been rigorously demonstrated particularly when electric double

layers, redox reactions, and ion insertion in the electrode occur simultaneously.

This study aims to develop a physicochemical model for simulating pseudoca-

pacitors and asymmetric (hybrid) supercapacitors by accurately and simultane-

ously accounting for the electric double layer coupled with redox reaction at the

electrode/electrolyte interface. It also aims to rigorously demonstrate Equation

(10.1) used widely in analyzing pseudocapacitors.

10.2 Background

Equivalent RC circuit/transmission line models [44, 123, 278, 411–415] have been

used to study the charging/discharging dynamics of pseudocapacitors. However,

the equivalent RC circuit/transmission line models suffer from drawbacks as stated

in Ref. [304]: “First, it is possible for two different models to produce the same

impedance response [...]. Second, the overall impedance expressions corresponding

to most models give little or no direct information about the physical meaning

of the elements for such models.” In fact, these models have to be fitted with

experimental data to retrieve the resistances and capacitances. Moreover, the

classical RC circuit models, consisting of constant resistances and capacitances,

neglect ion diffusion and non-uniform ion concentration in the electrolyte [128–

130]. Therefore, these models are invalid for electric double layers at large ion
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concentrations and electric potential, typical of energy storage devices [128–130].

Alternatively, homogeneous models were also developed for pseudocapacitors

[134,136,138–142,144,416–420]. These models treat the heterogeneous microstruc-

ture of the mesoporous electrodes as homogeneous with some effective macroscopic

properties determined from effective medium approximation and depending on

porosity and specific area [134,136,138–142,144,416–420]. Moreover, these mod-

els typically imposed the double layer areal capacitance (in F/m2) or volumetric

capacitance (in F/m3) instead of predicting them [134,136,138–142,144,416–420].

In addition, the double layer capacitances imposed in these models were typically

assumed to be constant and independent of electric potential [134, 136, 138–142,

144, 416–420]. However, the double layer capacitance is known to vary nonlin-

early with electric potential at large electric potentials and electrolyte concen-

trations [4, 95, 97, 102]. In addition, these simulations have been focused mainly

on supercapacitors consisting of porous hydrous RuO2 electrodes and electrolytes

such as H2SO4 [134, 136, 138–141, 416–419] with redox reactions, for the positive

electrode, given by [134,136,138–141,416–419],

H0.8RuO2·xH2O
charge−−−−−⇀↽−−−−−

discharge
H0.8−δRuO2·xH2O+ δH+ + δe− (10.3)

and for the negative electrode, given by [134,136,138–141,416–419],

H0.8RuO2·xH2O+ δH+ + δe−
charge−−−−−⇀↽−−−−−

discharge
H0.8+δRuO2·xH2O (10.4)

The literature, however, lacks studies for other pseudocapacitive materials.

Finally, first-principle molecular dynamic (MD) simulations have been per-

formed in recent years to explore the fundamental electrochemical behaviors of

pseudocapacitive materials including RuO2 [421–423], TiO2 [424], MnO2 [425],

and MoO3 [426]. However, MD simulations are limited to extremely small time-

and length-scales both far smaller than those encountered in actual supercapac-

itor experiments. Therefore, they are inadequate for performing extensive and
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systematic study of actual devices due to their computational cost and time re-

quirement.

This chapter aims to develop a continuum model to accurately simulate the

coupled transport and electrochemical phenomena in pseudocapacitors and asym-

metric supercapacitors. It is unique in that it simultaneously accounts for (i) the

charge transport in both electrode and electrolyte, (ii) the electric double layer

dynamics coupled with redox reaction, as well as (iii) finite ion sizes and the asso-

ciated Stern layer. It also aims to rigorously examine the semi-empirical approach

based on cyclic voltammetry measurements and the validity of Equations (10.1)

and (10.2) used for analyzing pseudocapacitors.

10.3 Analysis

10.3.1 Schematics and Assumptions

Figure 10.1 shows the schematic of the computational domain and of the as-

sociated coordinate system used to simulate the electrolyte solution consisting of

LiClO4 in propylene carbonate (PC) of concentration c∞ between two planar elec-

trodes. The region of electrolyte solution consists of three layers corresponding

to a Stern layer of thickness H near each electrode surface and a diffuse layer

beyond. The present study considers an asymmetric supercapacitor consisting of

a cathode made of transition metal oxide MpOq and an anode made of carbon.

The following redox reaction was assumed to take place at the Stern/diffuse layer

interface located at x = −L+H near the cathode,

nLi+ +MpOq + ne− −⇀↽− LinMpOq (10.5)

To make the problem mathematically tractable, the following assumptions

were made: (1) electrodiffusion of Li+ and ClO−
4 ions in the electrolyte and in-

tercalation of Li atoms in the electrode were one-dimensional as often assumed in

194



cation

Stern layer

a2

Diffuse layer

H

anion

solvent molecule

0 V

0

C
at

ho
de

-

-
-

-

-

-

-
ψψψψs

A
node

H

Stern layer

L-L
x

L+LA-L-LC

MpOq

LinMpOq

ne-

+

+
+

+

+

+

+

+-

a1C
ur

re
nt

 c
ol

le
ct

or

C
urrent collector

Figure 10.1: Schematic of the computational domain and coordinate system used

in simulating asymmetric supercapacitors with planar electrodes.

simulations of supercapacitors [134, 136, 138–142, 144, 148, 149, 260, 416–420]. (2)

The Stern layer thicknessH was approximated as the radius of the largest solvated

ions [260] so as to satisfy the electroneutrality condition. The approach defining

multiple Stern layers at a given electrode surface was not retained for reasons

discussed in Ref. [260]. (3) The electrode and electrolyte transport properties

were constant. (4) Isothermal conditions prevailed throughout the electrode and

electrolyte. Assumptions (3) and (4) were satisfied for small temperature varia-

tion in the device. (5) Advection of the electrolyte was assumed to be negligible

due to the absence of electrolyte flow conditions. (6) The redox reaction was

assumed to take place at the Stern/diffuse layer interface near the cathode at

x = −L+H [9,132,250,360,427,428]. Note that redox reactions in batteries and

supercapacitors are typically considered as “heterogeneous” such that they take

place only at the electrode/electrolyte interface [9, 132, 250, 360, 427, 428]. (7) Li

atoms were able to diffuse or intercalate into the electrode after the reduction re-

action [429–431]. This condition was realistic for pseudocapacitors or asymmetric
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supercapacitors with electrodes made of Nb2O5 or MnO2 [30, 142, 144, 415, 420],

and (8) the specific ion adsorption due to non-electrostatic forces was assumed to

be negligible. This assumption was considered reasonable based on the fact that

previous simulations of EDLCs [7,199] ignoring specific ion adsorption agreed well

with experimental data.

10.3.2 Governing Equations

The local electric potential ψ(x, t) in the cathode of thickness LC and in the anode

of thickness LA is governed by the one-dimensional Poisson equation expressed

as [149,260,388,389],

∂

∂x

(
σC
∂ψ

∂x

)
= 0 for − LC − L ≤ x ≤ −L (10.6)

∂

∂x

(
σA
∂ψ

∂x

)
= 0 for L ≤ x ≤ L+ LA (10.7)

where σC and σA are the electrical conductivities of the cathode and anode, re-

spectively. The transient local molar concentration of intercalated Li atoms in the

cathode, denoted by c1,C(x, t), is governed by the mass diffusion equation given

by [388,389,429–431],

∂c1,C
∂t

=
∂

∂x

(
D1,C

∂c1,C
∂x

)
for − LC − L ≤ x ≤ −L (10.8)

where D1,C is the diffusion coefficient of intercalated lithium atoms in the cathode.

Moreover, the ion transport in the diffuse layer −L + H ≤ x ≤ L − H of

the electrolyte solution is governed by the generalized modified Poisson-Nernst-

Planck (GMPNP) model [260] derived in Chapter 9. The GMPNP model is valid

for asymmetric electrolytes. For binary asymmetric electrolytes, it is expressed

as [260], 
∂

∂x

(
ϵ0ϵr

∂ψ

∂x

)
= −F

2∑
i=1

zici (10.9a)

∂ci
∂t

= −∂Ni

∂x
(10.9b)
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where ψ(x, t) is the local electric potential and ci(x, t) is the molar concentration

of ion species “i” (i = 1 or 2) in the electrolyte solution. Here, species 1 and 2

refer to Li+ and ClO−
4 ions in the electrolyte, respectively. Moreover, F is the

Faraday constant (F = 96485.3 sA/mol), ϵ0 and ϵr are the free space permittivity

(ϵ0 = 8.854× 10−12 F/m) and the relative permittivity of the electrolyte solution,

respectively. The mass flux of ion species “i”, denoted by Ni(x, t), is defined

as [260],

Ni(x, t) = −Di
∂ci
∂x

− DiFzici
RuT

∂ψ

∂x
− DiNAci

1−NA

2∑
i=1

a3i ci

∂

∂x

(
2∑

i=1

a3i ci

)
(10.10)

where Di and ai are the diffusion coefficient and the effective ion diameter of ion

species “i” in the electrolyte solution, respectively. The temperature is denoted

by T (in K), while NA and Ru are the Avogadro’s number (NA = 6.022 × 1023

mol−1) and the universal gas constant (Ru = 8.314 JK−1mol−1), respectively.

The first and second terms of Equation (10.10) represent the ions’ diffusion and

electrostatic migration, respectively, while the last term represents the correction

due to the finite ion sizes [260].

10.3.3 Boundary and Initial Conditions

The one-dimensional model given by Equations (10.6) to (10.9) consist of six

second order in space and first order in time partial differential equations. There-

fore, they require twelve boundary conditions and six initial conditions. First, the

electric potential was imposed as 0 V at the anode surface (x = L + LA) while

it was imposed as ψs(t) at the cathode surface (x = −LC − L). During cyclic

voltammetry measurements, ψs(t) is imposed as [260],

ψs(t) =

{
ψmax − v[t− 2(m− 1)τCV ] for 2(m− 1)τCV ≤ t < (2m− 1)τCV(10.11a)

ψmin + v[t− (2m− 1)τCV ] for (2m− 1)τCV ≤ t < 2mτCV (10.11b)

where m is the number of cycles of period τCV while ψmax and ψmin are the

maximum and minimum electric potentials, respectively.
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The Stern layers was accounted for via the following boundary conditions

at the Stern/diffuse layer interfaces near the anode (x = L − H) and cathode

(x = −L+H) [7, 95,146,260],

∂ψ

∂x
(L−H, t) =

1

H
[ψ(L, t)− ψ(L−H, t)] (10.12a)

−∂ψ
∂x

(−L+H, t) =
1

H
[ψ(−L, t)− ψ(−L+H, t)] (10.12b)

The current density was continuous across the electrode/electrolyte interfaces lo-

cated at x = ±L and across the Stern/diffuse interfaces located at x = ±(L−H)

[149,260,366,389,432]. These boundary conditions representing the continuity of

current density can be expressed as,

−σC
∂ψ

∂x
(−L, t) = jC(−L+H, t) + jF (−L+H, t) (10.13a)

−σA
∂ψ

∂x
(L, t) = jC(L−H, t) (10.13b)

Here, jC(x, t) is the capacitive current density (in A/m2) due to the electric

double layer forming at the anode and cathode defined as [291,323,324],

jC(x, t) = −ϵ0ϵr
∂2ψ

∂x∂t
(x, t) (10.14)

Moreover, jF (x, t) is the Faradaic current density (in A/m2) due to redox reactions

and Li insertion into the electrode. It is typically described by the generalized

Frumkin-Butler-Volmer model expressed as [9, 132,250,360,427,433],

jF (−L+H, t) = jF,0(−L+H, t)

[
e(1− α)(z1F/RuT )(∆ψH −∆ψEq)

−e−α(z1F/RuT )(∆ψH −∆ψEq)
]

(10.15)

where ∆ψH is the electrical potential drop across the Stern layer at the cath-

ode, i.e., ∆ψH = ψ(−L, t) − ψ(−L + H, t). Here, ∆ψeq is the equilibrium po-

tential difference [9, 132, 388, 429, 432, 434–436]. For electrodes made of tran-

sition metal oxides, ∆ψeq is typically expressed as a function of the “state-of-

charge” c1,C/c1,C,max by fitting experimental data for the “open-circuit poten-

tial” [388, 429, 432, 434–436]. The so-called exchange current density, denoted by
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jF,0(x, t), is expressed as [388,429,432,434,435],

jF,0(−L+H, t) = Fz1k0c
1−α
1 (c1,C,max − c1,C)

α(c1,C)
α (10.16)

where c1,C,max is the maximum concentration of intercalated lithium atoms in the

cathode while k0 is the reaction rate constant expressed in m2+αmol1−αs−1. Note

that in Equation (10.16), c1,C and c1 were evaluated at the cathode/electrolyte

interface located at x = −L and at the Stern/diffuse layer interface near the

cathode located at x = −L + H, respectively, i.e., c1,C = c1,C(−L, t) and c1 =

c1(−L+H, t). Here, the transfer coefficient α was assumed to be 0.5 corresponding

to identical energy barriers for forward and backward reactions [9, 132, 250, 360,

427].

Moreover, the mass flux of intercalated lithium atoms in the electrode was zero

at the cathode/current collector interface (x = −L−LC) while it was continuous

across the cathode/electrolyte interface (x = −L). These boundary conditions for

the concentrations of Li atoms in the electrode and Li+ ions in the electrolyte are

expressed as,

−D1,C
∂c1,C
∂x

(−L− LC , t) = 0 (10.17a)

−D1,C
∂c1,C
∂x

(−L, t) =
jF (−L+H, t)

F
(10.17b)

Furthermore, the mass flux of Li+ ions was continuous across the Stern/diffuse

layer interface (x = −L+H) near the redox-active cathode while it vanished near

the carbon anode such that,

N1(−L+H, t) =
jF (−L+H, t)

F
and N1(L−H, t) = 0 (10.18)

The mass fluxes of ClO−
4 ions vanished at both the anode and cathode, for lack

of redox reactions and ion insertion, so that

N2(−L+H, t) = N2(L−H, t) = 0 (10.19)
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Finally, the initial electric potential was assumed to be uniform across the

device and given by,

ψ(−L− LC ≤ x ≤ L+ LA, 0) = 0 (10.20)

Similarly, the initial ion concentrations were uniform in the electrode and elec-

trolyte and satisfied electroneutrality according to,

c1,C(−L− LC ≤ x ≤ −L, 0) = 0, c1(−L+H ≤ x ≤ L−H, 0) = c1,∞,

and c2(−L+H ≤ x ≤ L−H, 0) = −z1c1,∞/z2 (10.21)

Equations (10.6) to (10.21) reduce to simulating electric double layer capacitors

with a binary and asymmetric electrolyte when jF = 0, as performed in Refs.

[149, 260]. Note also that the model given by Equations (10.6) to (10.21) can

be extended to pseudocapacitors with redox-active cathode and anode by adding

the corresponding Faradaic current jF and the associated ion intercalation in the

anode.

10.3.4 Constitutive Relations

A total of 21 input parameters were needed to solve Equations (10.6) to (10.21)

including (i) the electrolyte properties ϵr, (ai)i=1,2, (zi)i=1,2, (Di)i=1,2, and c1,∞,

(ii) the electrode properties σC , D1,C , σA, k0, and ∆ψeq, (iii) the dimensions L,

LC , and LA, and (iv) the operating conditions T , ψmax, ψmin, and v.

The present study focused on propylene carbonate (PC) organic electrolyte

solution at room temperature so that T = 298 K with ϵr = 64.4 [219]. The

solvated ion diameters of Li+ and ClO−
4 in PC were taken as a1 = 0.67 nm and

a2 = 1.0 nm [253, 437], respectively. The Stern layer thickness H was defined

based on the largest solvated ions [260], i.e., H = a2/2. The Li+ and ClO−
4 ion

diffusion coefficients in PC were reported to beD1 = 2.6×10−10 m2/s [437,438] and

D2 = 3.3× 10−10 m2/s [437,438], respectively. The initial bulk ion concentrations

200



were imposed as c1,∞ = c2,∞ = 1 mol/L since z1 = −z2 = 1.

The cathode was assumed to be made of Nb2O5 while the anode was made of

activated carbon. Their respective electrical conductivities were σC = 6.9× 10−2

S/m and σA = 5 S/m [357,358]. The reaction rate constant k0 for transition metal

oxides has been reported between 10−11 and 10−8 m2.5mol−0.5s−1 [362,388,432,439].

Here, its baseline value was taken as k0 = 10−9 m2.5mol−0.5s−1. The maximum

intercalated lithium concentration in the cathode was estimated as c1,C,max =

nρ/M where ρ and M are the density and molar weight of the fully intercalated

metal oxide LinMpOq [141, 416], respectively. For fully intercalated Nb2O5, M =

279.7 g/mol, ρ ≈ 4.6 g/cm3, and n = 2 [30, 440] yielding c1,C,max ≈ 32.9 mol/L.

The diffusion coefficient of intercalated lithium atoms in transition metal oxides

is typically in the range from 10−16 to 10−10 m2/s [362, 441]. Here, its baseline

value was taken as D1,C = 10−14 m2/s.

Moreover, the electrolyte thickness was takes as 2L = 20 µm while the elec-

trode thickness LC = LA ranges from to 20 nm to 10 µm. For practical purposes,

electrodes with LC = LA = 10 µm corresponded to semi-infinite electrodes. The

temperature was constant and equal to 298 K. The maximum and minimum val-

ues of the surface electric potential ψs(t) were imposed as ψmax = 0.8 V and

ψmin = 0.2 V, respectively. In addition, the equilibrium potential difference ∆ψeq

was assumed to be zero for the sake of simplicity [391,442–444]. Finally, the scan

rate v was arbitrarily varied from 10−3 to 10 V/s. This range covers the scan

rates typically encountered in actual CV measurements of pseudocapacitors and

asymmetric supercapacitors [29, 30,177,369,370,393–406].

10.3.5 Dimensional Analysis

Based on our previous studies [149, 260], the following scaling parameters were

used to scale the governing equations for ψ, ci, and c1,C as well as the associated
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boundary and initial conditions,

x∗ =
x

λD
, t∗ =

tD1

λ2D
, ψ∗ =

ψ

RuT/z1F
, c∗i =

ci
c1,∞

, and c∗1,C =
c1,C

c1,C,max

(10.22)

where λD =

√
ϵ0ϵrRuT/F 2

2∑
i=1

z2i ci,∞ is the Debye length for binary asymmetric

electrolytes representing an estimate of the diffuse layer thickness [35].

The governing equations for the electric potential in the electrodes [Equations

(10.6) to (10.8)] assuming constant electrode electrical conductivities can be ex-

pressed in dimensionless form as

∂

∂x∗

(
σ∗
C

∂ψ∗

∂x∗

)
= 0 for − (L∗ + L∗

C) ≤ x∗ < −L∗ (10.23)

∂

∂x∗

(
σ∗
A

∂ψ∗

∂x∗

)
= 0 for L∗ < x∗ ≤ L∗ + L∗

A (10.24)

where σ∗
j = [σj(ψmax−ψmin)/LC ]/(Fz1c1,∞D1/L), with j being C or A, represent

the ratios of the characteristic current densities in the cathode and anode, respec-

tively, to that in the electrolyte. They can also be interpreted as the ratio of time

scale for charge transport in the electrolyte to that in the cathode or anode [260].

Similarly, the mass conservation Equation (10.8) in the electrode was non-

dimensionalized as,

∂c∗1,C
∂t∗

=
∂

∂x∗

(
D∗

1,C

∂c∗1,C
∂x∗

)
for − (L∗ + L∗

C) ≤ x∗ ≤ −L∗ (10.25)

where D∗
1,C = D1,C/D1 is the ratio of lithium atom diffusion coefficient in the

cathode to that of Li+ ions in the electrolyte. Here, L∗ = L/λD is the dimen-

sionless half electrolyte thickness while L∗
C = LC/λD and L∗

A = LA/λD are the

dimensionless cathode and anode thicknesses, respectively.

Moreover, the GMPNP model [Equations (10.9)] in the diffuse layer of the

electrolyte, defined by−L∗+H∗ ≤ x∗ ≤ L∗−H∗, was transformed in dimensionless

form as, 
∂2ψ∗

∂x∗2
= −c

∗
1 + z∗2c

∗
2

1− z∗2
(10.26a)

∂c∗i
∂t∗

= −∂N
∗
i

∂x∗
(10.26b)
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Here, H∗ = a∗2/2 where a∗2 = a2/λD is the dimensionless effective anion diameter

scaled by the Debye length. The dimensionless mass flux N∗
i was given by,

N∗
i (x

∗, t∗) = −D∗
i

∂c∗i
∂x∗

−D∗
i z

∗
i c

∗
i

∂ψ∗

∂x∗
− D∗

i c
∗
i

2−
2∑

i=1

νpic
∗
i

∂

∂x∗

2∑
i=1

νpic
∗
i (10.27)

where z∗2 = z2/z1 and D∗
2 = D2/D1 are the ratios of the valencies and diffusion

coefficients between anions and cations, respectively. Note that z∗2 = −1 and

D∗
2 = 1 for symmetric electrolytes. Here, the packing parameter for ion species

“i” is defined as νpi = 2c1,∞/(1/a
3
iNA). It represents the ratio of the total bulk

ion concentration to the maximum ion concentration 1/a3iNA assuming a simple

cubic packing of ions of diameter ai [102,130].

The dimensionless electric potentials imposed at the current collector/electrode

interfaces are given by [260,445],

ψ∗(L∗ + L∗
A, t

∗) = 0 and ψ∗(−L∗ − L∗
C , t

∗) = ψ∗
s (10.28)

where ψ∗
s(t

∗) is the dimensionless surface potential. Under cyclic voltammetry

testing, it is given by [260],

ψ∗
s(t

∗) =

{
ψ∗
max − v∗[t∗ − 2(m− 1)τ ∗CV ] for 2(m− 1)τ ∗CV ≤ t∗ ≤ (2m− 1)τ ∗CV (10.29a)

ψ∗
min + v∗[t∗ − (2m− 1)τ ∗CV ] for (2m− 1)τ ∗CV ≤ t∗ ≤ 2mτ ∗CV (10.29b)

where τ ∗CV = (ψ∗
max −ψ∗

min)/v
∗ represents the dimensionless half cycle period and

v∗ = (λ2D/D1)/[(RuT/z1F )/v] is the dimensionless scan rate. It can be interpreted

as the ratio of the ion diffusion time scale τd = λ2D/D1 and the characteristic time

τth = RuT/z1F necessary to reach the thermal potential at scan rate v, i.e., v∗ =

τd/τth [260]. Moreover, ψ∗
max = ψmax/(RuT/z1F ) and ψ∗

min = ψmin/(RuT/z1F )

are the maximum and minimum surface potentials, respectively, scaled by the

thermal potential. The latter represents the electric potential of ions such that

their potential energy equals their thermal energy given by kBT . Note that ψ∗
max

and ψ∗
min can be also interpreted as the ratio of characteristic times to reach ψmax
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or ψmin to the characteristic time for reaching the thermal potential at scan rate

v [260].

Moreover, the boundary conditions [Equations (10.12)] accounting for the

Stern layer at both electrodes can be written in dimensionless form as,

∂ψ∗

∂x∗
(L∗ − a∗2/2, t

∗) =
2

a∗2
[ψ∗(L∗, t∗)− ψ∗(L∗ − a∗2/2, t

∗)] (10.30a)

−∂ψ
∗

∂x∗
(−L∗ + a∗2/2, t

∗) =
2

a∗2
[ψ∗(−L∗, t∗)− ψ∗(−L∗ + a∗2/2, t

∗)](10.30b)

Similarly, the boundary conditions [Equations (10.13)] representing the continuity

of current density became in dimensionless form at the cathode surface,

− σ∗
C

ψ∗
max − ψ∗

min

L∗
C

L∗
∂ψ∗

∂x∗
(−L∗, t∗) = j∗C(−L∗ + a∗2/2, t

∗) + j∗F (−L∗ + a∗2/2, t
∗)(10.31a)

while at the anode surface, it was expressed as

− σ∗
A

ψ∗
max − ψ∗

min

L∗
A

L∗
∂ψ∗

∂x∗
(L∗, t∗) = j∗C(L

∗ − a∗2/2, t
∗) (10.31b)

Here, the dimensionless capacitive and Faradaic current densities, scaled by the

ionic current density Fz1D1c1,∞/λD representing the characteristic current density

due to ion diffusion, are given by,

j∗C(L
∗ − a∗2/2, t

∗) = −(1− z∗2)
∂2ψ∗

∂x∗∂t∗
(L∗ − a∗2/2, t

∗) (10.32a)

j∗C(−L∗ + a∗2/2, t
∗) = −(1− z∗2)

∂2ψ∗

∂x∗∂t∗
(−L∗ + a∗2/2, t

∗) (10.32b)

j∗F (−L∗ + a∗2/2, t
∗) = j∗F,0(−L∗ + a∗2/2, t

∗)

[
e(1− α)(∆ψ∗

H −∆ψ∗
eq)

−e−α(∆ψ
∗
H −∆ψ∗

eq)
]

(10.32c)

Here, j∗F,0 is the dimensionless exchange current density expressed as,

j∗F,0(−L∗ + a∗2/2, t
∗) = k∗0c

∗
1,C,maxc

∗1−α
1 (1− c∗1,C)

α(c∗1,C)
α (10.33)

where c∗1,C,max = c1,C,max/c1,∞ is the ratio of maximum lithium atom concentration

in the cathode to the bulk lithium ion concentration in the electrolyte. Moreover,
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c∗1,C = c1,C/c1,C,max is the ratio of lithium atom concentration at the cathode sur-

face to its maximum value c1,C,max, i.e., c
∗
1,C ranges from 0 to 1. The dimensionless

reaction rate constant is expressed as k∗0 = k0c
α
1,∞λD/D1. It can be interpreted as

the ratio of the time scale of ion diffuse in the electrolyte given by λ2D/D1 to the

redox reaction time scale given by λD/k0c
α
1,∞.

In addition, the dimensionless mass flux boundary conditions for N∗
1 and N∗

2

were given, at the cathode Stern/diffuse layer interface, by

N∗
1 (−L∗ + a∗2/2, t

∗) = j∗F (−L∗ + a∗2/2, t
∗) and N∗

2 (−L∗ + a∗2/2, t
∗) = 0(10.34)

and at the anode Stern/diffuse layer interface, by

N∗
1 (L

∗ − a∗2/2, t
∗) = N∗

2 (L
∗ − a∗2/2, t

∗) = 0 (10.35)

Finally, the initial dimensionless electric potential was given by,

ψ∗(−L∗ − L∗
C ≤ x∗ ≤ L∗ + L∗

A, 0) = 0 (10.36)

Similarly, the initial uniform concentrations in the electrode and electrolyte were

in the following dimensionless form,

c∗1(−L∗ − L∗
C ≤ x∗ ≤ −L∗, 0) = 0, c∗1(−L∗ + a∗2/2 ≤ x∗ ≤ L∗ − a∗2/2, 0) = 1,

and c∗2(−L∗ + a∗2/2 ≤ x∗ ≤ L∗ − a∗2/2, 0) = −1/z∗2 (10.37)

Overall, the scaling analysis demonstrates that the dimensionless governing

equations and associated boundary and initial conditions are governed by only
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seventeen dimensionless similarity parameters. They can be identified as

v∗ =
λ2D/D1

(RuT/z1F )/v
, ψ∗

max =
ψmax

RuT/z1F
, ψ∗

min =
ψmin

RuT/z1F
, L∗ =

L

λD
,

a∗2 =
a2
λD

, νp1 = 2a31NAc1,∞, νp2 = 2a32NAc1,∞, D∗
2 =

D2

D1

, z∗2 =
z2
z1
,

σ∗
C =

σC(ψmax − ψmin)/LC

Fz1c1,∞D1/L
, σ∗

A =
σA(ψmax − ψmin)/LA

Fz1c1,∞D1/L
,

L∗
C =

LC

λD
, L∗

A =
LA

λD
, D∗

1,C =
D1,C

D1

, c∗1,C,max =
c1,C,max

c1,∞
,

k∗0 =
k0c

1/2
1,∞λD

D1

, and ∆ψ∗
eq =

ψeq

RuT/z1F
(10.38)

Note that v∗, ψ∗
max, ψ

∗
min, L

∗, a∗2, νp1, νp2, D
∗
2, z

∗
2 , σ

∗
C , σ

∗
A, L

∗
C , and L∗

A were

identical to those identified in Ref. [260] for CV simulations of electric double layer

capacitors with binary asymmetric electrolytes. For asymmetric supercapacitors

with redox reactions and ion insertion taking place at the cathode, four additional

dimensionless numbers appeared, namely, D∗
1,C , c

∗
1,C,max, k

∗
0, and ∆ψ∗

eq.

10.3.6 Method of Solution and Data Processing

The governing Equations (10.6) and (10.10) were solved in dimensional form along

with the boundary and initial conditions given by Equations (10.12) to (10.21)

using the commercial finite element solver COMSOL 4.3b. CV measurements were

simulated by numerically imposing the periodic surface electric potential given by

Equation (10.11).

The numerical convergence criterion was defined such that the maximum

relative difference in the predicted current densities jC and jF at the cathode

Stern/diffuse layer interface (x = −L+H) was less than 1% when dividing both

the mesh size and the time step by a factor of two. This corresponded to imposing

a time step of ∆t ≈ tCV /1000 = (ψmax − ψmin)/1000v. The mesh size was the

smallest at the Stern/diffuse layer interface due to the large potential gradient and

then gradually increased. The mesh size was specified to be less than 0.025 nm
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at the Stern/diffuse layer interface while it was LC/25 and LA/25 in the electrode

domains and L/50 in the diffuse layer. The total number of finite elements was

about 350 for all cases simulated in the present study.

The instantaneous capacitive density jC(t) and Faradaic current density jF (t)

were computed according to Equations (10.14) and (10.15), respectively. The

instantaneous total current density jt was computed as the sum of the capacitive

and Faradaic current densities, i.e., jt(t) = jC(t) + jF (t). CV curves at a specific

scan rate were obtained by plotting jt(t), jC(t), and jF (t) versus ψs(t).

10.3.7 Validation

The numerical tool was validated based on three cases reported in the literature.

First, the transient ion concentration and electric potential profiles were predicted

by solving the PNP and MPNP models without redox reactions for binary and

symmetric electrolytes (N = 2, z1 = −z2 = z, D1 = D2, and a1 = a2) with

constant surface electric potential. The results were successfully compared with

the reported numerical solutions of ci(x, t) and ψ(x, t) for planar electrodes for a

wide range of packing parameter νp and dimensionless surface potential ψ∗
s [146].

Second, the transient Faradaic current was predicted from the linear sweep

voltammetry simulations with surface redox reactions near planar electrodes and

with ion diffusion in semi-infinite electrolyte domain. The numerical results with

vanishing ion size (ai = 0 nm) agreed well with the classical “Randles-Sevčik”

solution [9, 407–410] for a wide range of scan rate.

Third, the CV curves were predicted by solving the generalized MPNP model

for the surface redox reaction with four ion species near a hemispherical electrode

of radius 0.71 mm assuming zero surface electric field. Figure 10.2 compares the

predicted Faradaic current jF versus ψs curve with the numerical solution reported

in Ref. [15] for one-electron redox reaction with four ion species. The ion valencies
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were z1 = +3, z2 = +2, z3 = +1, and z4 = −1 while other parameters were

ai = 0.66 nm, v = 0.05 V/s, c1∞ = 0.005 mol/L, csup = 0.15 mol/L, ψmin = −0.5

V, ψmax = 0.2 V, k0 = 0.01 m/s, and ψ0 = −0.175 V. The bulk ion concentrations

were c1,∞ = 0.005 mol/L, c2,∞ = 0 mol/L, c3,∞ = 0.15 mol/L, c4,∞ = 0.165

mol/L. The ion diffusion coefficients were D1 = 0.9×10−9 m2/s, D2 = 10−9 m2/s,

D3 = 1.8 × 10−9 m2/s, and D4 = 1.95 × 10−9 m2/s while their valencies were

z1 = 3, z2 = 2, z3 = 1, and z4 = −1. Good agreement was observed between our

simulation results and those reported in Ref. [15].

10.4 Results and Discussions

10.4.1 Numerical Cyclic Voltammetry

10.4.1.1 Predicted CV Curves

Figures 10.3 shows the numerically predicted capacitive jC , Faradaic jF , and total

jt current densities versus surface potential ψs curves from CV simulations for four

cases with different LC and D1,C , i.e., (i) LC = 20 nm and D1,C = 10−10 m2/s, (ii)

LC = 500 nm and D1,C = 10−10 m2/s, (iii) LC = 20 nm and D1,C = 10−14 m2/s,

and (iv) LC = 500 nm and D1,C = 10−14 m2/s. The other parameters were iden-

tical to those used in Case 1 of Table 10.1. Results were obtained by numerically

solving the GMPNP model with the Stern layer accounting for the potential drop

and Li diffusion in the cathode. Figures 10.3(a) to 10.3(c) demonstrate that the

predicted total current density jt was dominated by the Faradaic current density

jF . Moreover, the predicted jt or jF remained nearly the same among Cases (i)

to (iii). Furthermore, Figure 10.3(b) demonstrates that, unlike other cases, Case

(iv) featured a smaller Faradaic current density jF by about a factor of two due to

the large electrode thickness LC and the small Li atom diffusion coefficient D1,C .

This can be attributed to the fact that the electrode cannot be fully charged, i.e.,

cannot reach c1,C(−LC ≤ x ≤ −L) = c1,C,max, when its thickness is large and
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Figure 10.2: Comparison of predicted Faradaic current jF versus ψs curve from

CV simulations for a hemispherical electrode of radius 0.71 mm with the numerical

solution reported in Ref. [15]. Results were obtained by numerically solving the

generalized MPNP model assuming zero surface electric field with ai = 0 nm

(i=1, 2, 3, and 4), v = 0.05 V/s, ψmax = 0.2, ψmin = −0.5, k0 = 0.01 m/s, and

ψ0 = −0.175 V. The bulk ion concentrations were c1,∞ = 0.005 mol/L, c2,∞ = 0

mol/L, c3,∞ = 0.15 mol/L, c4,∞ = 0.165 mol/L. The ion diffusion coefficients were

D1 = 0.9×10−9 m2/s,D2 = 10−9 m2/s,D3 = 1.8×10−9 m2/s, andD4 = 1.95×10−9

m2/s while their valencies were z1 = 3, z2 = 2, z3 = 1, and z4 = −1.

when the diffusion process of Li atoms in the electrode is slow. This, in turn, led

to smaller values of jF than when the electrode was thin and the Li atom diffusion

coefficient was relatively large. For practical pseudocapacitor applications, such

cases should be avoided.
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Figure 10.3: Numerically predicted capacitive jC , Faradaic jF , and total jt current

densities versus surface potential ψs curves from CV simulations for four cases with

different LC and D1,C .

10.4.1.2 Proof of the Relationship jt = k1v + k2v
1/2

Figure 10.4 shows the predicted jt/v as a function of 1/v1/2 at surface poten-

tial ψs = −0.6 V and −0.4 V obtained from CV simulations for asymmetric

supercapacitors. Results were obtained by numerically solving Equations (10.6)

to (10.21) with parameters identical to those reported in Case 1 of Table 10.1.
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Figure 10.4 demonstrates that jt/v increased linearly with increasing 1/v1/2, i.e.,

jt/v = k1 + k21/v
1/2. It is evident that the parameters k1 and k2 depend on the

potential ψs. This, in turn, proved that Equation (10.1) is valid for CV simula-

tions in the presence of both electric double layers and redox reactions as well as

Li atom intercalation in the electrode.

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

 

 
j t/

v 
(A

s/V
m

2 )

v1/2 (V/s)1/2

s = -0.6 V
s = -0.4 V

Figure 10.4: Predicted jt/v as a function of 1/v1/2 for asymmetric supercapacitors

at surface potential ψs = −0.6 V and −0.4 V. Results were obtained by numer-

ically solving Equations (10.6) to (10.21) for CV simulations with parameters

identical to those reported in Case 1 of Table 10.1.

10.4.2 Dimensionless CV curves

10.4.2.1 Dimensionless Analysis

Table 10.1 summarizes the different values of v, ψmin, ψmax, T , z1, z2, a1, a2, D1,

D2, c1∞, ϵr, L, σC , σA, LC = LA, D1,C , c1,C,max, k0, and ∆ψeq for four differ-

ent cases considered. For all of them, the dimensionless numbers were identical,
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Table 10.1: Parameters used in CV simulations reported in Figure 10.5 with

∆ψeq = 0 V and z1 = −z2 = 1 for all cases considered. In these four cases, the

dimensionless numbers were identical and equal to v∗ = 1.13× 10−8, ψ∗
max = 31.2,

ψ∗
min = 7.79, L∗ = 3641.5, a∗2 = 3.65, νp,1 = 1.21, νp,2 = 0.36, D∗

2 = 1.27, z∗2 = −1,

σ∗
C = 0.16, σ∗

A = 12, L∗
C = L∗

A = 36415, D∗
1,C = 3.8× 10−5, k∗0 = 3.34× 10−8, and

∆ψ∗
eq = 0.

Parameters Case 1 Case 2 Case 3 Case 4

v (V/s) 1 0.1 0.215 0.0091

ψmax (V) 0.8 0.8 0.8 0.6

ψmin (V) 0.2 0.2 0.2 0.15

T (K) 298 298 298 223.5

a1 (nm) 0.67 0.67 1.44 1.92

a2 (nm) 1.0 1.0 2.16 2.88

D1 (m2/s) 2.6× 10−10 2.6× 10−11 2.6× 10−10 2.6× 10−11

D2 (m2/s) 3.3× 10−10 3.3× 10−11 3.3× 10−10 3.3× 10−11

c1,∞ (mol/L) 1.0 1.0 0.1 0.042

ϵr 78.5 78.5 36.4 36.4

L (µm) 1.0 1.0 2.15 2.87

σC (S/m) 0.069 0.0069 0.0069 3.88× 10−4

σA (S/m) 5 5 5 5

LC = LA (µm) 10 10 21.5 28.7

D1,C (m2/s) 10−14 10−15 10−14 10−15

c1,C,max (mol/L) 32.9 32.9 3.29 1.39

k0 (m2.5mol−0.5s−1) 10−9 10−10 1.47× 10−9 1.69× 10−10

namely, v∗ = 1.13 × 10−8, ψ∗
max = 31.2, ψ∗

min = 7.79, L∗ = 3641.5, a∗2 = 3.65,

νp,1 = 1.21, νp,2 = 0.36, D∗
2 = 1.27, z∗2 = −1, σ∗

C = 0.165, σ∗
A = 0.165,

L∗
C = L∗

A = 36415, D∗
1,C = 3.8 × 10−5, c∗1,C,max = 32.9, k∗0 = 3.34 × 10−8, and

∆ψ∗
eq = 0. Figures 10.5a and 10.5b show the predicted capacitive and Faradaic

current densities jC and jF versus surface potential ψs from CV simulations for

these four cases. Results were obtained by numerically solving the GMPNP model
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Figure 10.5: Predicted dimensional (a) jC versus ψs curves, (b) jF versus ψs

curves, and corresponding dimensionless (c) j∗C versus ψ∗
s curves, and (d) j∗F versus

ψ∗
s curves from CV simulations for cases 1 to 4 with parameters given in Table

10.1. Results were obtained by numerically solving the GMPNP model with the

Stern layer accounting for the potential drop and Li diffusion in the cathode.

with the Stern layer accounting for the potential drop and Li diffusion in the

cathode. Figures 10.5a and 10.5b indicate that capacitive and Faradaic current

densities jC and jF were significantly different in these four cases. However, Fig-

ures 10.5c and 10.5d plot the dimensionless current densities j∗C and j∗F versus ψ∗
s
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curves and demonstrate that they overlapped for all four cases considered. These

results established that the governing equations and boundary and initial con-

ditions were properly scaled and that the dimensionless CV curves are uniquely

determined by the dimensionless numbers given by Equations (10.38).

10.4.2.2 Different Forms of CV Curves

Figure 10.6 shows the predicted dimensionless current densities j∗C , j
∗
F , and j∗t

versus ψ∗
s curves from CV simulations for four different values of dimensionless

reaction rate constant k∗0, i.e., (a) k
∗
0 = 3.34 × 10−7, (b) k∗0 = 3.34 × 10−8, (c)

k∗0 = 3.34×10−9, and (d) k∗0 = 3.34×10−10. The dimensionless diffusion coefficient

D∗
1,C was small and equal to D∗

1,C = 3.8 × 10−5 for these four cases. The other

dimensionless numbers were identical to those reported in Table 10.1. Figures

10.6(a) and 10.6(b) demonstrate that, for a small value of D∗
1,C = 3.8× 10−5, the

dimensionless current densities j∗C , j
∗
F , and j∗t versus ψ∗

s curves had the similar

shape and magnitude for k∗0 > 3.34 × 10−7. Further increasing k∗0 had no effect

on the predicted j∗C , j
∗
F , and j∗t versus ψ∗

s curves. Thus, the Faradaic current

density was limited by the diffusion of Li atoms in the electrode. On the other

hand, Figures 10.6(c) and 10.6(d) demonstrate that the predicted Faradaic current

density j∗F decreased with decreasing values of k∗0. In this regime, the dimensionless

Faradaic current density j∗F was limited by redox reaction rate and thus j∗t was

dominated by the dimensionless capacitive current density j∗C .

Similarly, Figure 10.7 shows the predicted current densities j∗C , j
∗
F , and j∗t

versus ψ∗
s curves for four cases with different values of k∗0, i.e., (a) k

∗
0 = 3.34×10−4,

(b) k∗0 = 3.34 × 10−6, (c) k∗0 = 3.34 × 10−8, and (d) k∗0 = 3.34 × 10−9. For these

four cases, the Li atom diffusion coefficient D∗
1,C was significantly larger than that

in previous simulations shown in Figure 10.6 and equal to D∗
1,C = 38. The other

dimensionless numbers remained the same as those of Table 10.1. Figures 10.7(a)

to 10.7(c) demonstrate that, for large values of D∗
1,C and k∗0 > 3.34 × 10−8, the
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Figure 10.6: Predicted dimensionless CV curves for four different values of

dimensionless reaction rate constant k∗0, namely, (a) k∗0 = 3.34 × 10−7, (b)

k∗0 = 3.34× 10−8, (c) k∗0 = 3.34× 10−9, and (d) k∗0 = 3.34× 10−10. Here, D∗
1,C was

small and equal to 3.8× 10−5. The other dimensionless parameters were identical

to those reported in Table 10.1.

predicted CV curves were nearly symmetric and j∗C was nearly zero. Moreover, the

total dimensionless current density j∗t was dominated by j∗F unlike that observed

in Figure 10.6 with small D∗
1,C . Indeed, CV curves shown in Figures 10.7(a)

to 10.7(c) correspond to fast redox reactions and Li atom intercalation in the
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electrodes. These CV curves were similar to those observed experimentally with

MnO2/gold or MnO2/graphene composite electrodes in Refs. [446, 447]. Finally,

Figure 10.7(d) demonstrates that j∗F decreased significantly when decreasing k∗0

to k∗0 < 3.34× 10−9. Then, the total current density j∗t was dominated by j∗C . In

this regime, the Faradaic current was limited by redox reactions similar to that

observed in Figure 10.6(d).

10.4.3 Current Versus Scan Rate Analysis

Figure 10.8 shows the dimensionless total j∗t , capacitive j
∗
C , and Faradaic j∗F cur-

rent densities predicted for Nb2O5/carbon asymmetric supercapacitors as a func-

tion of scan rate v ranging from 10−3 to 10 V/s. Results were obtained by solving

the GMPNP model with the Stern layer accounting for the potential drop and

Li diffusion in the cathode with parameters reported in Section 10.3.4. Figure

10.8 demonstrates that the j∗C increased nearly linearly with v∗ and j∗F was pro-

portional to v∗1/2 for the range of scan rates considered. Note that the capac-

itive j∗C and Faradaic j∗F current densities j∗F dominate at large and small scan

rates, respectively. It is evident that the total current density j∗t was given by

j∗t = k∗1v
∗ + k∗2v

∗1/2. These results establish that this widely used formula for an-

alyzing pseudocapacitive materials is indeed valid in the presence of both electric

double layers and redox reactions with ion intercalation.

10.5 Conclusion

This chapter developed a physicochemical model for simulating asymmetric super-

capacitors and pseudocapacitors by simultaneously accounting for (1) asymmetric

electrolytes with (2) finite ion size, (3) Stern and diffuse layers, and (4) redox

reactions with associated ion insertion in the pseudocapacitive electrode. Dimen-

sional analysis of the governing equations was also performed for CV measure-
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Figure 10.7: Predicted dimensionless CV curves for four different values of

dimensionless reaction rate constant k∗0, namely, (a) k∗0 = 3.34 × 10−7, (b)

k∗0 = 3.34× 10−8, (c) k∗0 = 3.34× 10−9, and (d) k∗0 = 3.34× 10−10. Here, D∗
1,C was

large and equal to 3.8× 10−5. The other dimensionless parameters were identical

to those reported in Table 10.1.

ments of asymmetric supercapacitors with 21 dimensional parameters. Seventeen

dimensionless numbers given by Equation (10.38) were identified to govern the CV

measurements of asymmetric supercapacitors using binary asymmetric electrolytes
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Figure 10.8: Predicted dimensionless total j∗t , capacitive j∗C , and Faradaic j∗F

current densities for Nb2O5/carbon asymmetric supercapacitors at surface po-

tential ψ∗
s = −23.36 as a function of scan rate v∗ ranging from 10−11 to 10−7.

The dimensionless numbers were ψ∗
max = 31.2, ψ∗

min = 7.79, L∗ = 3641.5,

a∗2 = 3.65, νp,1 = 1.21, νp,2 = 0.36, D∗
2 = 1.27, z∗2 = −1, σ∗

C = 0.16, σ∗
A = 12,

L∗
C = L∗

A = 36415, D∗
1,C = 3.8× 10−5, k∗0 = 3.34× 10−8, and ∆ψ∗

eq = 0

between two planar electrodes. The Faradaic current was limited by diffusion of

Li atoms in the electrode for small D∗
1,C and it was limited by redox reactions for

small k∗0. This study rigorously established that, in CV measurements of pseudo-

capacitive materials, the total current was expressed as jt = k1v + k2v
1/2 where

the first and second terms on the right-hand-side of Equation (11.2) correspond

to capacitive and Faradaic currents, respectively.
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CHAPTER 11

Conclusions and Future Work

This chapter summarizes the main contributions of the present study and makes

recommendations for future work beyond the results reported in this thesis.

11.1 Main Contributions

The present study not only presented physicochemical models of electrochemical

capacitors but also provided rigorous interpretations to experimental observations

and design rules for ECs. The main contributions of this thesis can be summarized

as follows.

11.1.1 Development of Physicochemical Models

The present study identified the important phenomena that must be simultane-

ously accounted for in order to accurately simulate actual EDLCs characterized

by large electrolyte concentrations and surface electric potentials. It established

that (i) both Stern and diffuse layers, (ii) finite ion size, (iii) the dependency of

electrolyte permittivity on the local electric field, (iv) the asymmetric nature of

the electrolytes, and (v) the curvature of the electrode/electrolyte interface must

be accounted for.

New boundary conditions have been derived to account for the presence of

the Stern layer without resolving it in the computational domain. These bound-

ary conditions have enabled the first simulations of three-dimensional electrode
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structures of EDLCs. The results were validated against experimental data.

Moreover, a generalized modified Poisson-Nernst-Planck (GMPNP) model was

developed from first principles to simulate electric double layer dynamics simul-

taneously accounting for (1) asymmetric electrolytes with (2) multiple ion species

of (3) finite ion size, and (4) Stern and diffuse layers.

Finally, a dynamic physicochemical model was developed for pseudocapacitors

and asymmetric supercapacitors by rigorously and simultaneously accounting for

the electric double layer coupled with reversible redox reaction as well as ion

insertion in the electrode.

Note that all the simulations performed did not rely on fitting parameters

unlike those using traditional approaches [199, 244, 260]. In addition, simulations

were systematically validated against experimental data reported in the literature.

11.1.2 Physical Understanding of Electrochemical Capacitors

The dynamic models developed here have enabled rigorous physical interpreta-

tion of experimental observations. For example, this study established that elec-

tric double layers feature an intrinsic “capacitance dispersion” at high frequencies

in electrochemical impedance spectroscopy (EIS) measurements. This was at-

tributed to the fact that ion transport could not follow the fast variation in elec-

tric potential. Moreover, this study also established that the “hump” observed

in CV curves of EDLCs was due to the saturation of ion concentration at the

electrode surface and not due to “electrolyte starvation” [341, 342], “redox reac-

tions” [40, 295, 343–351], or “difference of diffusion capability between solvated

anions and cations” [349] as proposed in the literature.

This study also revealed that the predicted EDL integral capacitance was

constant and equal to the capacitance under quasi-equilibrium conditions for di-

mensionless scan rate v∗ ≪ 1 in CV measurements where v∗ is given by Equation
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(8.14). Then, the electrode had no effect on the EDL capacitance measured at

scan rates smaller than a critical value. Similarly, the EDL differential capaci-

tance was independent of frequency for dimensionless frequency τmf ≪ 1 in EIS

measurements where τm is given by Equation (7.10).

Dimensional analysis was performed based on the GMPNP model and eleven

dimensionless numbers given by Equation (9.19) were identified to govern the CV

measurements of electric double layer in binary asymmetric electrolytes between

two identical planar electrodes of finite thickness. For the first time, a self-similar

behavior was identified for the electric double layer integral capacitance estimated

from CV measurements. It was expressed as,

Cs

Cs,0

=
1

1 +

[
τRC

1.22τCV

(
1 +

80

σ∗
s

)]1.44 (11.1)

where Cs,0 is the maximum capacitance observed in curves of Cs versus scan rate

v at low scan rates while τRC and τCV , given by Equation (9.25), are the “RC

time scale” for binary asymmetric electrolytes and the half cycle period of CV

measurements, respectively. Finally, σ∗
s is the dimensionless electrode electrical

conductivity given by Equation (9.19). This study also established that asym-

metric ion diameters and valencies must be accounted for in CV simulations with

asymmetric electrolytes for all scan rates. By contrast, asymmetric ion diffusion

coefficient affected the CV curves only at large scan rates.

Finally, this study rigorously establishes that, in CV measurements of pseu-

docapacitive materials, the total current was expressed as

jt = k1v + k2v
1/2 (11.2)

where the first and second terms on the right-hand-side of Equation (11.2) corre-

spond to capacitive and Faradaic currents, respectively. This equation was formu-

lated in a semi-empirical manner in the literature. The present study established

its validity rigorously.
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11.1.3 Design Rules

The models and results reported here are useful to rationalize the design of elec-

trochemical capacitors and to provide rules for optimizing the porous electrode

architecture of ECs and for selecting the electrolyte. For example, a scaling law

was derived, for the first time, to predict the integral areal capacitance of carbon-

based EDLCs with complex electrode morphology. It is expressed as the product

of an analytical expression for planar electrodes [Equation (6.16)] and a semi-

empirical function f(R∗
0 − a∗/2) accounting for the porous electrode morphology.

The latter was obtained using experimentally-measured integral areal capacitance

for EDLCs with various porous carbon electrodes and binary symmetric elec-

trolytes. The scaling law indicates that the integral areal capacitance was most

sensitive to the ions’ effective diameter and valency and to the electrolyte dielec-

tric constant. It was also sensitive to the pore radius R0 only as R0 approaches the

ion radius a/2. Overall, to achieve large integral areal capacitance (i) the effective

ion diameter a should be small, (ii) the electrolyte dielectric constant ϵr should

be large, (iii) the pores should be monodisperse and their diameter 2R0 should be

tailored to match the ion diameter, i.e., 2R0 ≈ a, and (iv) the ion valency should

be large.

Finally, these models will also be useful for simulating and designing various

practical electrochemical, colloidal, and biological systems for a wide range of

applications.

11.2 Future Work

This section presents several recommendations and suggestions for future model-

ing efforts to further optimize EDLCs and pseudocapacitors.
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11.2.1 Future Modeling of Electric Double Layer Capacitors

Dynamic Modeling of EDLCs With 3D Electrode Structures

Chapters 7 to 9 presented dynamic modeling of planar EDLCs based on the MPNP

or GMPNP model with Stern layer and accounting for charge transport in the

electrode. These simulations can be extended to EDLCs with three-dimensional

ordered electrode structures. This can be accomplished by combining the MPNP

or GMPNP model with the new boundary conditions derived in Chapter 3 ac-

counting for the presence of Stern layer. These simulations would help reveal

the effects of the 3D electrode morphology on the charging/discharging perfor-

mance and power density of EDLCs. Moreover, it will also be useful to simulate

the charging/discharging of 3D EDLCs with the actual length scale and account-

ing for the potential drop and ion diffusion throughout the mesoporous electrode

structure and across interfaces. Such simulations would offer a direct way to iden-

tify key design parameters for improving the energy and power densities of actual

devices.

Modeling of EDLCs With Electrolyte Mixtures

Recently, electrolyte mixtures with multiple ion species have been considered as

a way to extend the working conditions and improve the performances of EDLCs

[373–375,448]. For example, electrolyte mixtures could widen the operation tem-

perature and improve the electrical conductivity of EDLCs [373–375, 448]. Such

electrolyte mixtures include NaClO4 and NaPF6 in ethylene carbonate-dimethyl

carbonate [448] and ionic liquid mixture with [C3mpy][Tf2N] and [C4mpip][Tf2N]

[374], for example. The GMPNP model developed in Chapter 9 can be readily

used to simulate such systems involving asymmetric electrolytes with multiple

ion species. The corresponding results would provide guidelines on selecting the

optimum electrolyte mixture.
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Future Experiments for EDLCs

Experiments are needed to validate the scaling laws developed in Chapter 9 for

EDLCs with asymmetric electrolytes. For example, CV measurements could be

performed for different binary asymmetric electrolytes such as H2SO4, Na2SO4,

and Li2SO4 using planar electrodes. Moreover, future 3D dynamic modeling of

EDLCs should be validated against experimental data on charging/discharging of

supercapacitors with 3D ordered electrode structures. The validation could be

made by comparing the predicted and measured CV curves.

11.2.2 Future Modeling of Pseudocapacitors and Asymmetric Super-

capacitors

Pseudocapacitive Electrodes With 3D Structures

Pseudocapacitors and asymmetric supercapacitors employ pseudocapacitive ma-

terials (e.g., RuO2, TiO2, MnO2, V2O5, and Nb2O5) to increase the capacitance

and the energy density of supercapacitors via fast redox reactions. The three-

dimensional electrode structures significantly affect the performance of these su-

percapacitors. Indeed, 3D ordered pseudocapacitive electrodes provide many ad-

vantages including fast ion transport paths, good electronic conductivity, and im-

proved electrochemical stability at high charging/discharging rates [370,449–455].

First, the model developed in Chapter 10 along with the boundary conditions

developed in Chapter 5 can be used for simulating the coupled transport and

electrochemical phenomena in pseudocapacitive materials with three-dimensional

ordered structures. In fact, ordered electrode structures also significantly simplify

the simulations due to reduced geometric complexity and computational cost.

Such simulations would help identify the optimum 3D electrode morphologies for

increasing the energy and power densities of the devices.
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Second, scaling analysis could be performed for pseudocapacitors by analogy

with what has been described in Chapters (6) to (9) for EDLCs. This analysis

would use the dimensionless similarity parameters identified in Chapters (6) to (9)

and experimental data reported in the literature for mesoporous Nb2O5 [30,398],

MoO3 [370], and CeO2 [456], for example.

Asymmetric Supercapacitors With Optimum Electrode Combinations

Asymmetric supercapacitors provide opportunities to enhance both energy and

power densities by combining the advantages of pseudocapacitors and EDLCs.

The model developed in Chapter 10 can be readily used for extensive and system-

atic simulations of asymmetric supercapacitors with various combinations of the

electrodes. Then, these simulations would help identify optimum combinations of

redox active electrodes and carbon-based electrodes to improve the overall device’

performance.

Supercapacitors With Composite Electrodes

Composite electrodes such as carbon-based mesoporous electrodes coated with

redox-active materials (e.g., carbon nanotube/SnO2 [46], carbon/MnO2 [45, 447,

457,458], graphene/RuO2 [392], graphene/Ni(OH)2 [392], carbon nanotube/V2O5

[458], and gold/MnO2 [446]) have attracted significant attention in recent years

[28, 45–47, 392, 446, 447, 457, 458]. These composite electrodes provide advantages

including (i) they enhanced overall electrical conductivity of the electrodes and

(ii) they increased the amount of redox-active sites for pseudocapacitive materials

provided by the 3D carbon scaffold with tunable macro/mesopores [28,45–47,392,

446, 447, 457, 458]. Here, it is essential to understand the role of 3D electrode

structures and the composites in affecting the ion transport and redox reactions

for optimizing the electrode architecture. Modeling of such systems could be
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achieved by combining the models developed in Chapters 5 and 10. Important

design parameters to be investigated include the thickness of the coated redox-

active materials and the electrode structure/pore size. These parameters need to

be optimized to improve the charge storage capability and charging time [28,45–

47,392,446,447,457,458].

11.2.3 Thermal Modeling of Supercapacitors

Thermal behaviors such as heat generation during charging/discharging are key is-

sues affecting the performances, reliability, lifetime, and safety of electrical energy

storage devices such as batteries and supercapacitors [445]. The transport and

electrochemical phenomena involved determine the thermal behaviors of these de-

vices. Physical modeling provides a good way to thoroughly understand the ther-

mal behaviors of supercapacitors. For example, the thermal oscillation behavior

of EDLCs has been recently studied and rigorously interpreted by members of

our research group thanks to detailed physical modeling of transport phenomena

involved [445]. However, such simulations have not been extended to pseudocapac-

itors involving exothermic or endothermic redox-reactions. This can be achieved

by incorporating thermal transport in the model developed in Chapter 10 of this

thesis. These simulations and results could provide guidelines for avoiding pre-

mature performance degradation and potential hazards.
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APPENDIX A

Appendix: Supplemental Material to Chapter 9

A.1 Full domain simulations

Figure A.1 shows the predicted capacitive current density jC versus surface po-

tential ψs at the electrode A and −ψs at electrode B. Results were obtained by

solving the generalized MPNP model with a Stern layer [Equations (9.5) to (9.10)]

for the full domain −L + H ≤ x ≤ L − H. The ion diameters were imposed as

a1 = 0.66 nm and a2 = 0.60 nm while the valencies and diffusion coefficients were

chosen to be symmetric as z1 = −z2 = 1 and D1 = D2 = 1.957 × 10−9 m2/s.

Other parameters were c1,∞ = 1 mol/L, T = 298 K, ϵr = 78.5, v = 104 V/s, and

L = 200 µm. Figure A.1 shows that the transient capacitive current densities jC

at two electrodes were always exactly opposite satisfying the charge conservation

principle [459]. Similar results were also observed for electrolytes with asymmetric

valency and diffusion coefficient (not shown).

A.2 Revisiting half domain simulations

When simulating the half domain, e.g., −L + H ≤ x ≤ 0, the boundary condi-

tions at the middle plane located at x = 0 were required [148, 149]. In previous

simulations for symmetric electrolytes, the electric potential and ion concentra-

tions were assumed to be constant satisfying the electroneutrality condition such

that [148,149],

ψ(x = 0, t) = 0, c1(x = 0, t) = c1∞, and c2(x = 0, t) = −c1,∞z1/z2 (A.1)
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Figure A.1: Predicted CV curves at the electrodes A and B for the full domain.

Results were obtained by numerically solving the generalized MPNP model with

a Stern layer [Equations (9.5) to (9.10)] with a1 = 0.66 nm, a2 = 0.60 nm, z1 = 1,

z2 = −1, D1 = D2 = 1.957 × 10−9 m2/s while c1∞ = 1 mol/L, T = 298 K,

ϵr = 78.5, v = 104 V/s, and L = 200 µm.

The corresponding dimensionless boundary conditions at the middle plane located

at x∗ = 0 were,

ψ∗(x∗ = 0, t∗) = 0, c∗1(x
∗ = 0, t∗) = 1, and c∗2(x

∗ = 0, t∗) = 1/z∗2 (A.2)

In order to assess the validity of half-domain simulations, as performed in Refs.

[148, 149], Figure A.2a shows the predicted jC versus ψs curves with symmetric

electrolytes for (i) the full-domain simulations with −L+H ≤ x ≤ L−H as well

as for (ii) the half-domain simulations with 0 ≤ x ≤ L−H. Results were obtained

by solving the GMPNP model with a Stern layer [Equations (9.5) to (9.10) and

(A.1)]. Note that zero potential and bulk ion concentrations [Equation (A.1)]

were imposed at the midplane x = 0 for half-domain simulations as previously
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discussed. The ion diameters were taken as a1 = a2 = 0.66 nm while the valencies

and diffusion coefficients were z1 = −z2 = 1 and D1 = D2 = 1.957 × 10−9 m2/s.

Other parameters were c1,∞ = 1 mol/L, v = 104 V/s, L = 200 µm, ψmax = ψmin =

0.5 V, T = 298 K, and ϵr = 78.5. It is evident that, for symmetric electrolytes,

the predicted CV curves obtained for the half-domain were identical to those

obtained for the full-domain. This established that, for symmetric electrolytes, it

suffices to perform CV simulations for only half of the electrolyte domain by virtue

of antisymmetry in the electric potential. This has the advantage of reducing

the number of meshes and the computational time. On the other hand, Figure

A.2b shows the predicted current density jC versus ψs obtained by simulating

the full as well as the half domains for asymmetric electrolytes with a1 = 0.66

nm and a2 = 0.60 nm. The model and other parameters were identical to those

used to generate the results shown in Figure A.2a. Figure A.2b demonstrates

that the predicted current density jC obtained by simulating the half-domain

differed from that obtained by simulating the full-domain. In fact, the difference

increased with increasing difference in ion diameters (not shown). Note that

similar trend was also observed for electrolytes with asymmetric valency. This can

be attributed to the fact that for asymmetric electrolytes, the potential ψ(0, t) in

the middle plane between the two electrodes was not equal to 0. In other words,

the boundary condition ψ(0, t)=0 V, given by Equation (A.1), is not valid for

asymmetric electrolytes.

Figure A.3 shows the predicted electric potential ψ(t) at the middle plane

(x = 0) as a function of time t from CV simulations with the entire domain for

three cases. Here, three different combinations of ion diameters were considered,

namely, (i) a1 = 1.0 nm and a1 = 0.60 nm, (ii) a1 = 0.66 nm and a1 = 0.60

nm, and (iii) a1 = a2 = 0.66 nm. It is evident that the electric potential at the

middle plane remained zero and invariant with time for the case with equal ion

diameters while it oscillated and deviated away from zero for cases with unequal
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ion diameters. In addition, the deviation increased with increasing the difference

in the unequal ion diameters. However, the ion concentrations remained ci,∞ at

the middle plane (not shown). These results demonstrate that, for asymmetric

electrolytes, the boundary conditions given by Equations (A.1) at the middle plane

were invalid and thus full entire domain must be simulated.

A.3 Effect of finite ion size

In order to demonstrate the necessity of accounting for the finite ion size, Figure

A.4a shows the predicted CV curves jC versus ψs with finite ion size a1 = a2 =

a = 0.66 nm as well as with vanishing ion size, i.e., a1 = a2 = a = 0 nm. For

both cases, the Stern layer thickness was imposed to be H = 0.33 nm. The model

and other parameters were identical to those used to generate the results shown in

Figure 2. Note that the model with a1 = a2 = 0 nm and H = 0.33 nm corresponds

to the PNP model with a Stern layer. Figure A.4a demonstrates that the model

neglecting the finite ion size significantly overpredicted the current density jC for

almost the entire range of surface potential ψs. Moreover, Figure A.4b shows the

corresponding surface cation concentration as a function of surface potential ψs

for the same cases considered in Figure A.4a. It demonstrates that the surface

cation concentration was bounded to its maximum value cmax = 1/NAa
3 = 5.77

mol/L when accounting for the finite ion size. By contrast, the surface cation

concentration reached an unrealistically large value of 116 mol/L when neglecting

the finite ion size. Overall, these results demonstrated that the finite ion size must

be accounted for in simulating electric double layer dynamics for surface potential

larger than 0.5 V and ion concentration lager than 1 mol/L.

Note that in a recent study [460], the classical PNP model with a Stern layer

was used for simulating the electric double layer dynamics with constant surface

potential of 1 V. The results were shown to be qualitatively consistent to those

predicted by molecular dynamics simulations [460]. However, the authors imposed
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the surface charge density so that the “steric limit” due to finite ion size were not

violated [460]. Unfortunately, unlike the surface potential or capacitive current

density, the surface charge density cannot be imposed at the electrode surface in

many practical applications such as in supercapacitors and batteries.

A.4 Capacitance versus scan rate

A.4.1 Scaling of valency and inter-electrode distance

Figure A.5a shows the double layer capacitance Cs predicted from CV simulations

and estimated using Equation (8.2) as a function of scan rate v ranging from 1 to

107 V/s for L = 10 or 100 µm and z2 = −1, −2, or −3. The other parameters

were identical among all these cases, namely, a1 = a2 = 0.66 nm, z1 = 1, D1 =

2 × 10−9 m2/s, c1∞ = 1 mol/L, T = 298 K, and ϵr = 78.5. It is evident that

these Cs versus v curves were significantly different from one another. For all

cases considered, the predicted capacitances Cs reached their respective maxima,

denoted by Cs,0, at small scan rates where Cs was independent of v and L. Such

conditions corresponded to the quasi-equilibrium or diffusion-independent regime

[149]. In this regime, ion transport was fast enough to follow the variation in the

electric potential and the predicted areal integral capacitance Cs was independent

of the scan rate and ion diffusion [149]. On the other hand, for large scan rates,

Figure A.5a shows that the predicted Cs decreased rapidly with increasing v due to

the fact that charging and discharging became limited by ion diffusion. Note that

similar phenomena were also observed in CV simulations for binary and symmetric

electrolytes [149]. Moreover, the critical scan rate v at which the capacitance Cs

started decreasing was smaller for larger inter-electrode distance 2L. Indeed, it

takes longer time for ion species to transport to the electrode surface for a larger

inter-electrode distance. In addition, the predicted value of Cs increased with

decreasing z2 (i.e., increasing |z2|), as previously discussed.
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Figure A.5b shows the dame data as shown in Figure A.5a but plotted in

terms of Cs/Cs,0 as a function of the product v∗L∗. It is interesting to note that

all curves collapsed on a single line, irrespective of their different values of L and

z2. These results demonstrate that the valency and inter-electrode distance were

successfully scaled when plotting Cs/Cs,0 as a function of v∗L∗.

A.4.2 Scaling of potential window

Figure A.6a shows the predicted Cs versus v curves for six cases with different

values of potential window, namely, ψmax − ψmin = 0.01, 0.1, 0.5, 0.75, 1.0, and

1.3 V. The model and other parameters were identical to those used to generate

the results shown in Figure A.1. It is evident that the Cs versus v curves were

significantly different from one another. However, Figure A.6b shows that the

same data collapsed on a single line when plotting in terms of Cs/Cs,0 as a function

of v∗L∗/(ψ∗
max − ψ∗

min). This demonstrates that the potential window in CV

measurements was successfully scaled using v∗L∗/(ψ∗
max − ψ∗

min).

A.4.3 Scaling of asymmetric diffusion coefficients

Figure A.7a shows the predicted Cs versus v curves for five cases with different

values of diffusion coefficient, namely, D2 = 0.01D1, 0.1D1, 1.0D1, 10D1, and

100D1 while D1 = 1.957 × 10−9 m2/s. The model and other parameters were

identical to those used to generate the results shown in Figure A.1. It is evident

that the Cs versus v curves were significantly from one another. However, Figure

A.7b shows that the same data collapsed on a single line when plotting in terms

of Cs/Cs,0 as a function of v∗L∗/(1+D∗
2). This demonstrates that the asymmetric

diffusion coefficients in CV measurements was successfully scaled using v∗L∗/(1+

D∗
2).
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A.4.4 Effect of ion diameter

Figure A.8a shows the predicted Cs versus v curves for three cases with different

values of ion diameters, namely, a1 = a2 = 0.60 nm, a1 = a2 = 0.66 nm, and

a1 = 1.0 nm, a2 = 0.6 nm. The model and other parameters were identical to

those used to generate the results shown in Figure A.1. It is evident that the

maximum capacitance increased with decreasing ion diameters. Moreover, the Cs

versus v curves were significantly from one another. However, Figure A.7b shows

that the same data collapsed on a single line when plotting in terms of Cs/Cs,0

as a function of v∗L∗/[(1 + D∗
2)(ψ

∗
max − ψ∗

min)], irrespective of the different ion

diameters.
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Figure A.2: Predicted jC versus ψs curves for (a) symmetric electrolytes with

a1 = a2 = 0.66 nm and (b) asymmetric electrolytes with a1 = 1.0 nm and

a2 = 0.60 nm. Results were obtained by numerically solving the generalized

MPNP model with a Stern layer [Equations (9.5) to (9.10)] with z1 = −z2 = 1,

D1 = D2 = 1.957×10−9 m2/s, c1∞ = 1 mol/L, v = 104 V/s, L = 100 µm, T = 298

K, and ϵr = 78.5.
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Figure A.3: Predicted electric potential ψ at the middle plane as function of

time t from CV simulations for the entire domain. Three cases with different

ion diameters were considered, namely, (i) a1 = 1.0 nm and a1 = 0.60 nm, (ii)

a1 = 0.66 nm and a1 = 0.60 nm, and (iii) a1 = a2 = 0.66 nm. The model and

other parameters were identical to those used to generate the results shown in

Figure A.1.
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Figure A.4: Predicted (a) jC versus ψs curves and (b) surface cation concentration

cs versus ψs curves from CV simulations for two cases with finite ion diameters

a1 = a2 = 0.60 nm and with vanishing ion diameters a1 = a2 = 0 nm, respectively.

The model and other parameters were identical to those used to generate the

results shown in Figure A.1.
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Figure A.5: Predicted (a) capacitance Cs as a function of scan rate v and (b)

Cs/Cs,0 as a function of v∗L∗ obtained from CV simulations for L = 10 or 100 µm

and z2 = −1, −2, or −3. The other parameters were identical among all cases,

namely, D1 = 1.957× 10−9 m2/s, c∞ = 1 mol/L, T = 298 K, and ϵr = 78.5.
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Figure A.6: Predicted (a) capacitance Cs versus scan rate v and (b) Cs/Cs,0

versus v∗L∗/(ψ∗
max−ψ∗

min) from CV simulations for six cases with different values

of potential window, namely, ψmax − ψmin = 0.01, 0.1, 0.5, 0.75, 1.0, and 1.3

V. The model and other parameters were identical to those used to generate the

results shown in Figure A.1.
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Figure A.7: Predicted (a) capacitance Cs versus scan rate v and (b) Cs/Cs,0

versus v∗L∗/(1 + D∗
2) from CV simulations for five cases with different ion dif-

fusion coefficients, namely, D2 = 0.01D1, 0.1D1, 1.0D1, 10D1, and 100D1 with

D1 = 1.957× 10−9 m2/s. The model and other parameters were identical to those

used to generate the results shown in Figure A.1.
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Figure A.8: Predicted (a) capacitance Cs versus scan rate v and (b) Cs/Cs,0 versus
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min)] from CV simulations for three sets of ion diameters,

namely, a1 = a2 = 0.60 nm, a1 = a2 = 0.66 nm, and a1 = 0.93 nm, a2 = 0.6 nm.

The model and other parameters were identical to those used to generate the

results shown in Figure A.1.
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[205] E. Raymundo-Piñero, K. Kierzek, J. Machnikowski, and F. Béguin, “Re-
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