Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Adhesion and Surface Interactions of a Self‐Healing Polymer with Multiple Hydrogen‐Bonding Groups

Abstract

The surface properties and self-adhesion mechanism of self-healing poly(butyl acrylate) (PBA) copolymers containing comonomers with 2-ureido-4[1H]-pyrimidinone quadruple hydrogen bonding groups (UPy) are investigated using a surface forces apparatus (SFA) coupled with a top-view optical microscope. The surface energies of PBA-UPy4.0 and PBA-UPy7.2 (with mole percentages of UPy 4.0% and 7.2%, respectively) are estimated to be 45-56 mJ m-2 under dry condition by contact angle measurements using a three probe liquid method and also by contact and adhesion mechanics tests, as compared to the reported literature value of 31-34 mJ m-2 for PBA, an increase that is attributed to the strong UPy-UPy H-bonding interactions. The adhesion strengths of PBA-UPy polymers depend on the UPy content, contact time, temperature and humidity level. Fractured PBA-UPy films can fully recover their self-adhesion strength to 40, 81, and 100% in 10 s, 3 h, and 50 h, respectively, under almost zero external load. The fracture patterns (i.e., viscous fingers and highly "self-organized" parallel stripe patterns) have implications for fabricating patterned surfaces in materials science and nanotechnology. These results provide new insights into the fundamental understanding of adhesive mechanisms of multiple hydrogen-bonding polymers and development of novel self-healing and stimuli-responsive materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View