Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Gene expression and biological pathways in tissue of men with prostate cancer in a randomized clinical trial of lycopene and fish oil supplementation.

Abstract

Background

Studies suggest that micronutrients may modify the risk or delay progression of prostate cancer; however, the molecular mechanisms involved are poorly understood. We examined the effects of lycopene and fish oil on prostate gene expression in a double-blind placebo-controlled randomized clinical trial.

Methods

Eighty-four men with low risk prostate cancer were stratified based on self-reported dietary consumption of fish and tomatoes and then randomly assigned to a 3-month intervention of lycopene (n = 29) or fish oil (n = 27) supplementation or placebo (n = 28). Gene expression in morphologically normal prostate tissue was studied at baseline and at 3 months via cDNA microarray analysis. Differential gene expression and pathway analyses were performed to identify genes and pathways modulated by these micronutrients.

Results

Global gene expression analysis revealed no significant individual genes that were associated with high intake of fish or tomato at baseline or after 3 months of supplementation with lycopene or fish oil. However, exploratory pathway analyses of rank-ordered genes (based on p-values not corrected for multiple comparisons) revealed the modulation of androgen and estrogen metabolism in men who routinely consumed more fish (p = 0.029) and tomato (p = 0.008) compared to men who ate less. In addition, modulation of arachidonic acid metabolism (p = 0.01) was observed after 3 months of fish oil supplementation compared with the placebo group; and modulation of nuclear factor (erythroid derived-2) factor 2 or Nrf2-mediated oxidative stress response for either supplement versus placebo (fish oil: p = 0.01, lycopene: p = 0.001).

Conclusions

We did not detect significant individual genes associated with dietary intake and supplementation of lycopene and fish oil. However, exploratory analyses revealed candidate in vivo pathways that may be modulated by these micronutrients.

Trial registration

ClinicalTrials.gov NCT00402285.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View