Skip to main content
eScholarship
Open Access Publications from the University of California

Assessing the fitness consequences of mitonuclear interactions in natural populations.

  • Author(s): Hill, Geoffrey E
  • Havird, Justin C
  • Sloan, Daniel B
  • Burton, Ronald S
  • Greening, Chris
  • Dowling, Damian K
  • et al.

Published Web Location

https://doi.org/10.1111/brv.12493
Abstract

Metazoans exist only with a continuous and rich supply of chemical energy from oxidative phosphorylation in mitochondria. The oxidative phosphorylation machinery that mediates energy conservation is encoded by both mitochondrial and nuclear genes, and hence the products of these two genomes must interact closely to achieve coordinated function of core respiratory processes. It follows that selection for efficient respiration will lead to selection for compatible combinations of mitochondrial and nuclear genotypes, and this should facilitate coadaptation between mitochondrial and nuclear genomes (mitonuclear coadaptation). Herein, we outline the modes by which mitochondrial and nuclear genomes may coevolve within natural populations, and we discuss the implications of mitonuclear coadaptation for diverse fields of study in the biological sciences. We identify five themes in the study of mitonuclear interactions that provide a roadmap for both ecological and biomedical studies seeking to measure the contribution of intergenomic coadaptation to the evolution of natural populations. We also explore the wider implications of the fitness consequences of mitonuclear interactions, focusing on central debates within the fields of ecology and biomedicine.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View