- Main
Potential of Depth-of-Interaction-Based Detection Time Correction in Cherenkov Emitter Crystals for TOF-PET
Published Web Location
https://doi.org/10.1109/trpms.2022.3226950Abstract
Cherenkov light can improve the timing resolution of Positron Emission Tomography (PET) radiation detectors, thanks to its prompt emission. Coincidence time resolutions (CTR) of ~30 ps were recently reported when using 3.2 mm-thick Cherenkov emitters. However, sufficient detection efficiency requires thicker crystals, causing the timing resolution to be degraded by the optical propagation inside the crystal. We report on depth-of-interaction (DOI) correction to mitigate the time-jitter due to the photon time spread in Cherenkov-based radiation detectors. We simulated the Cherenkov and scintillation light generation and propagation in 3 × 3 mm2 lead fluoride, lutetium oxyorthosilicate, bismuth germanate, thallium chloride, and thallium bromide. Crystal thicknesses varied from 9 to 18 mm with a 3-mm step. A DOI-based time correction showed a 2-to-2.5-fold reduction of the photon time spread across all materials and thicknesses. Results showed that highly refractive crystals, though producing more Cherenkov photons, were limited by an experimentally obtained high-cutoff wavelength and refractive index, restricting the propagation and extraction of Cherenkov photons mainly emitted at shorter wavelengths. Correcting the detection time using DOI information shows a high potential to mitigate the photon time spread. These simulations highlight the complexity of Cherenkov-based detectors and the competing factors in improving timing resolution.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-