Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Accurate Bulk Quantitation of Droplet Digital Polymerase Chain Reaction

Abstract

Droplet digital PCR provides superior accuracy for nucleic acid quantitation. The requirement of microfluidics to generate and analyze the emulsions, however, is a barrier to its adoption, particularly in low resource settings or clinical laboratories. Here, we report a novel method to prepare ddPCR droplets by vortexing and readout of the results by bulk analysis of recovered amplicons. We demonstrate the approach by accurately quantitating SARS-CoV-2 sequences using entirely bulk processing and no microfluidics. Our approach for quantitating reactions should extend to all digital assays that generate amplicons, including digital PCR and LAMP conducted in droplets, microchambers, or nanoliter wells. More broadly, our approach combines important attributes of ddPCR, including enhanced accuracy and robustness to inhibition, with the high-volume sample processing ability of quantitative PCR.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View